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Abstract

Objective: Automated air‐conduction pure‐tone audiograms through Bayesian es-

timation and machine learning (ML) classification have recently been proposed in the

literature. Although such ML‐based audiometry approaches represent a significant

addition to the field, they remain unsuited for daily clinical settings, in particular for

listeners with asymmetric or conductive hearing loss, severe hearing loss, or cochlear

dead zones. The goal here is to expand on previously proposed ML approaches and

assess the performance of this improved ML audiometry for a large sample of lis-

teners with a wide range of hearing status.

Methods: First, we describe the changes made to the ML method through the

addition of: (1) safety limits to test listeners with a wide range of hearing status, (2)

transient responses to cater for cochlear dead zones or nonmeasurable thresholds,

and importantly, (3) automated contralateral masking to test listeners with asym-

metric or conductive hearing loss. Next, we compared the performance of this

improved ML audiometry with conventional and manual audiometry in a large cohort

(n = 109 subjects) of both normal‐hearing and hearing‐impaired listeners.

Results: Our results showed that for all audiometric frequencies tested, no signifi-

cant difference was found between hearing thresholds obtained using manual

audiometry on a clinical audiometer as compared to both the manual and automated

improved ML methods. Furthermore, the test–retest difference was not significant

with the automated improved ML method for each audiometric frequency tested.

Finally, when examining cross‐clinic reliability measures, significant differences were

found for most audiometric frequencies tested.

Conclusions: Together, our results validate the use of this improved ML‐based

method in adult clinical tests for air‐conduction audiometry.
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INTRODUCTION

Nearly 20% of today's world population live with hearing loss (HL). Yet,

hearing disorders remain widely undiagnosed and untreated, leading to

central neural deficits, ranging from language acquisition impairments in

children1 to dementia and depression in older populations.2,3 In fact,

hearing loss represents a major health and societal challenge, with

substantial economic impact. One of the main reasons that hearing loss

remains underdiagnosed today in developed countries is due to a lack

of available time for hearing healthcare professionals and a limited

number of trained hearing specialists: ENT doctors and audiologists. As

recently pointed out by Lesica et al.,4 our hearing healthcare system still

relies on labor‐intensive procedures and this is particularly true for the

hearing examination process, namely the conduction of audiometry

tests. Although recent technological innovation in clinical applications

through artificial intelligence and machine learning (ML) is starting to

have a widespread impact in different clinical settings, including the

detection of retinal diseases5,6 and medical imaging,7,8 they remain

rarely applied in the hearing healthcare system (e.g., speech audiometry

tests,9,10 audiogram interpretation,11 and see Wasmann et al.12).

In most countries, clinical hearing assessment relies on one pri-

mary measure, pure‐tone audiometry, carried out manually by an ex-

pert health practitioner.13 Pure‐tone audiometry consists of estimating

detection thresholds of pure tones presented in silence and at differ-

ent frequencies, hence providing a pure‐tone audiogram for each ear.

The commonly used procedure is based on a modified version of the

Hughson–Westlake procedure.14,15 Precisely, this measurement is

performed frequency by frequency, with a first sound at a given fre-

quency being presented to the listener at an audible intensity level.

The intensity is then reduced in fixed increments until the listener no

longer responds, that is, the listener no longer hears the stimuli. The

intensity is then increased by a smaller increment until the listener

responds again. This procedure is then repeated for several such

reversals for each frequency and each ear.16–19

To save time, automated measures20 of pure‐tone audiometry

have been proposed. In fact, some automated methods are currently

commercialized, for example, the Automated Method for Testing

Auditory Sensitivity (AMTAS) (Grason‐Stadler, Interacoustics).21,22

However, most commercialized automated methods have similar

drawbacks as the manual conventional method: (1) they measure the

audiogram for a discrete number of frequencies (sparse sampling may

lead to incomplete hearing assessment at untested frequencies), (2)

they use multiple tones presented at one frequency (leading to pre-

dictable tone detection), and (3) they use a minimum of 5 dB intensity

steps (higher precision may improve hearing aid fittings).

To address those issues, several authors have recently described

novel ways of measuring pure‐tone audiometry through the use

of ML. 12 Such ML approaches (e.g., the Machine Learning Audiogram

[MLAG]) are based on both active sampling methods to rapidly esti-

mate audiometric thresholds23,24 and probabilistic classification.25

Such ML‐based audiometry provides continuous audiogram thresh-

olds in frequency, with 1‐dB precision and uses test sounds that are

not predictable. More recently, an online version of the MLAG has

also been developed and validated,26 in addition to measures of

bilateral audiograms in both ears simultaneously,27 to further reduce

testing time. In parallel, Schlittenlacher et al.28 extended the work of

Gardner et al.23 by evaluating two distinct methods for continuous

audiogram threshold estimation: Yes/No and Counting of tone

pulses. The authors28 also incorporated an omission rate to account

for the listener's imperfect responses (i.e., misses and false alarms)

leading to improved threshold estimates.

To ensure the safe and adequate use of such ML‐based audi-

ometry in routine clinical tests for adult listeners with hearing loss of

different etiologies, including conductive, sensorineural, or mixed

hearing loss of all degrees of severity from mild to severe losses, the

current work extends the ML approach described in Schlittenlacher

et al.28 More precisely, we implemented the following key changes:

1. the addition of transient positive and negative responses to

constrain the audiometry test phase, to safely test listeners with

cochlear dead zones and severe losses (previously unaddressed),

2. the addition of automated contralateral masking rules to better

account for air‐bone gaps (ABGs) than what has been previously

described,29 and

3. general safety limits during automated testing to cater to a wide

range of normal‐hearing (NH) and hearing‐impaired (HI) listeners

in routine clinical settings.

Here, in the first study, we present the ML‐based approach de-

veloped by Schlittenlacher et al.,28 theYes/No ML method), to measure

pure‐tone thresholds and highlight the different changes we applied in

the development of our improved ML‐based method in a computer

software. Next, the performance of this improved ML audiometry with

both manual and automated pure‐tone audiometry tests was compared

to conventional, well‐established manual audiometry measures (“Ref-

erence”) in a large cohort of both NH and HI listeners.

We also assessed the test–retest reliability of the automated and

improvedML audiometry when run twice on the same group of subjects.

For comparison, we also examined test‐retest reliability in cross‐clinical

settings. Although no time gain is demonstrated for the listeners with the

use of the automated and improved ML‐based approach as compared to

manual conventional audiometry measures, test automation allows key

time gain for health professionals who no longer need to perform the

audiometry tests. Overall, these results validate the use of our auto-

mated and improved audiometry approach in daily clinical settings.

STUDY 1: PERFORMANCE OF AN
IMPROVED ML‐BASED AUDIOMETRY

Methods

Subjects

The subjects (n = 109) tested here were of a wide age range (see

Table 1) and were recruited from an audiology clinic in France. Only
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adults were tested (>18 years) and all subjects spoke French fluently.

No exclusion criteria based on the etiology of hearing loss was used,

in order to not exclude any type of hearing loss. No subjects were

excluded from the study. To have an overall balanced population of

subjects, the past hearing status of subjects (when available) were

used to ensure recruitment of subjects with different hearing loss

severities. All subjects were fully informed of the goal of the study

and provided written consent before their participation. The study

was approved by the French Regional Ethics Committee (Comité de

Protection des Personnes Est III; SI number: 22.03364.000107).

Lateralization test

Prior to the audiometry tests, participants were asked to indicate on

which side they had the best hearing. Next, all subjects were tested

using a manual procedure, to test their lateralization with a Weber

test. Subjects were equipped with an ossi‐vibrator positioned on the

forehead position and stimulated with pulsed pure tones at four

frequencies: 0.5, 1, 2, and 4 kHz with a 1 s‐long stimulus. For each

frequency, once the experimenter obtains the first positive response

from the subject, the intensity is increased by 15 dB to establish the

lateralization. To do so, subjects are asked to say which ear the sound

came from. The lateralization results for each frequency are stored

manually in the software interface by the experimenter, and the

results are used to automatically compute contralateral masking

levels for air‐conduction pure‐tone audiometry (see Methods Section

"Automated contralateral masking during automated audiometry

procedure").

Audiometry tests

Next, for all 109 subjects, hearing thresholds were measured for both

ears using three methods as follows:

1. Manual Reference audiometer,

2. Manual improved ML audiometer, and

3. Automated improved ML audiometer.

The order of presentation of the three tests was randomized. For

each subject, pure‐tone audiometry was measured for individual ears

with either manual masking (for “Manual Reference” and “Manual

improved ML‐audiometer,” see Methods section "Manual Audiome-

try") or an automated masking procedure (for “Automated improved

ML‐audiometer,” see Methods section "Automated ML‐Audiometry

Procedure") presented to the nontest ear.

Material and calibration

All testing took place in an audiometric booth. The Reference audi-

ometer used was a Natus–Otometrics Astera II diagnostic audiome-

ter equipped with Sennheiser HDA 200 headphones mounted on

Peltor earmuffs.

The second audiometer used was a computer software deve-

loped by My Medical Assistant SAS (iAudiogram). All stimuli were

generated at a sampling frequency of 44.1 kHz and a resolution of

24 bits. The digital‐to‐analog conversion was performed by an audio

interface without acoustic attenuation. Test stimuli, as well as con-

tralateral masking stimuli, were presented via TDH 39 headphones

mounted on Peltor earmuffs.

For the lateralization test, we used the Reference audiometer

equipped with a Radioear B71 ossi‐vibrator. Calibration was per-

formed for both devices by a Natus specialist technician, in accord-

ance with EN ISO 389‐8:200430 and IEC 60318‐1:2009,31 using a

Brüel & Kjær 4153 coupler, a Brüel & Kjær 0843 adaptor, a Brüel &

Kjær 0304 cone, and a Brüel & Kjær Artificial Mastoid Type 4930.

The sound pressure level was measured with a Brüel & Kjær 2250

TABLE 1 Age, gender, and hearing loss distribution of subjects.

Subject distribution

Gender

Male

Mean ± 1 SD Age (Minimum‐
Maximum Age)

n = 53 male (49%)

65.8 ± 14.3 years (23–87 years)

Female n = 56 female (51%)
60.2 ± 17.7 years (18–95 years)

All n = 109 subjects
62.9 ± 16.3 years (18–95 years)

Hearing status

NH n = 32 ears (15%)
16 female, 16 male
48.2 ± 18.1 years (21–75 years)

HI n = 186 ears (85%)

96 female, 90 male
42.2 ± 15.3 years (18–95 years)

Hearing loss severity

Mild hearing loss
(PTA between 21 and 40 dB)

n = 100 ears (46%)
49 female, 51 male
63.6 ± 11.7 years (18–85 years)

Moderate hearing loss

(PTA between 41 and 70 dB)

n = 78 ears (36%)

42 female, 36 male
67.8 ± 17.8 years (18–95 years)

Severe hearing loss
(PTA between 71 and 90 dB)

n = 8 ears (4%)
5 female, 3 male
66.1 ± 6.9 years (55–72 years)

Hearing loss type

Conductive hearing loss 4.3% of HI subjects

Mixed hearing loss 12.9% of HI subjects (with 5.4%
asymmetric loss)

Sensorineural hearing loss 82.8% of HI subjects (with
20.4% asymmetric loss)

Abbreviations: HI, hearing impaired; ML, machine learning; NH, normal
hearing; PTA, Pure‐Tone Average.
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sound level meter. The sound pressure levels measured at the cou-

pler were converted into dB HL using EN ISO 389‐1:201732 and

389‐8:2004,30 specifying the reference thresholds for the specific

headphones used.

ML‐based audiometry system and interface

The improved ML audiometer is a computer‐based software

(iAudiogram) intended to be used by hearing professionals to obtain

diagnostic‐quality air‐conduction pure‐tone audiometric data. Audi-

ometry can be performed both in a manual and in a fully automated

manner. Adult listeners of both genders may be tested, except for

subjects who are unable to cooperate due to age or other conditions

such as attentional disorders, or inability to follow instructions.

For all audiometry tests, the experimenter places the subject in a

test booth and instructs the subject to click on the remote‐control

button when they hear a pure‐tone sound in the test ear as shown on

the subject's monitor. Subjects are also told that noise may be pre-

sented to the nontest ear, but they should focus on the pure tones

and respond when they hear the pure tones in the test ear. Subjects

are also informed that pure tones may be presented in a random

manner with silent intervals in between and are reminded that their

task is to simply click the response button to let the experimenter

know when they hear the pure tones. Following these oral instruc-

tions, the experimenter equips the subject with the headphones and

launches the automated test before leaving the test booth. The ex-

perimenter can view the subject's responses on a second monitor

placed outside the test booth and may pause the test or restart it if

the subject has questions.

The ML‐audiometer software was developed in Python and

includes an experimenter interface and a subject interface in French

language (see Supporting Information S1: Figure 1). On the experi-

menter interface, ML‐based audiograms can be displayed as contin-

uous curves or transformed into discrete data points. For comparison

purposes for the current study, the thresholds of all ML‐based

audiograms were discretized to 11 conventional audiometry

frequencies.

Manual audiometry procedure

Manual pure‐tone audiometry test systematically begins by testing

the better ear declared by the subject, and if no better ear is declared,

the right ear is always tested first. The manual audiometry procedure

tests audiometry frequencies of 1, 1.5, 2, 3, 4, 6, 8, 0.75, 0.5, 0.25,

and 0.125 kHz in the given order as recommended in French audi-

ometry guidelines.33 The intensity level varies in 5 (up) and 10 dB

steps (down), also referred to as an asymmetric up–down proce-

dure.34 The experimenter adjusts the frequency and level directly

from the conventional audiometer or the software until the threshold

is obtained. The subject's response when he/she presses the button

to indicate that he/she hears appears directly on the experimenter

interface. The experimenter saves the audiometric thresholds directly

on the interface. The duration of the stimuli for each trial is defined

by the experimenter and varies according to general audiometry

recommendations.18,33

Manual masking rules applied

The manual pure‐tone audiometry test was performed following a set

of contralateral masking rules implemented in France and described

extensively in French audiometry guidelines.19

Hearing status of subjects

Following the conventional manual audiometry with the Reference

audiometer, a Pure‐Tone Average (PTA) was computed for each ear

by averaging audiometric threshold measures at the following fre-

quencies: 500, 1000, 2000, and 4000 Hz (in line with the French

guidelines35). The PTA of each ear was next linked to a specific

hearing status as shown in Table 1. The distribution of thresholds at

individual frequencies for all subjects is detailed in Supporting

Information S1: Table 1.

Automated ML audiometry procedure

For the automated ML‐based audiometry, a total of eight pure pulsed

tones of the same level and frequency were presented for each trial.

The use of multiple pulses was chosen to promote pulse detection in

subjects with tinnitus that might interfere with pure‐tone detection.

The duration of each pulse was 250ms, including a 20ms sinusoidal

ramp at the start and stop of each signal. The pulsed tones were

terminated as soon as the subject responded by pressing the

response button on the remote control. Silence intervals of 250ms

separated each pulsed tone (inter‐pulse interval). The duration

between two distinct test tones (interstimulus interval) was between

2 and 5.5 s with a jitter to avoid predictability effects.

These values differed from Schlittenlacher et al.28 (the Yes/

No ML method), in which the authors presented three tone pulses of

250 ms duration, with a 100ms interval. Here, a higher number of

tone pulses and longer inter‐pulse intervals made the task easier,

especially for elderly subjects (see also IEC 60645‐1:201736 on

interval lengths).

Initialization phase

Similar to the manual audiometry procedure, the automated pure‐

tone audiometry test systematically begins by testing the better ear

declared by the subject, and if no better ear is declared, the right ear

is always tested first.

In line with Schlittenlacher et al.,28 more precisely, the Yes/

No ML method, subjects are asked to press a response button only

when they hear a tone. Subjects are provided with a 4 s time window

to provide their answer. No answer within the 4 s window is counted

as a negative response, that is, the subject did not perceive the test

sound. Subjects are previously informed that tones are sent sto-

chastically and that some passages of several seconds may not

contain any sound. Next, similar to the initial test phase described in

Schlittenlacher et al.,28 an Initialization phase is performed to
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approximate the hearing thresholds of the subject for the following

audiometric frequencies: 1, 1.5, 2, 3, 4, 6, 8, 0.75, 0.5, 0.25, and

0.125 kHz.

The first test sound is presented at a frequency of 1 kHz and an

intensity level of 60 dB HL. When the stimulus is heard, the intensity

level is decreased in 20 dB steps until it is no longer audible. If it is not

heard, the intensity level is increased by 20 dB until the sound is

audible. This procedure is repeated until both a positive and a neg-

ative response are obtained. For intensity levels over 70 and 80 dB,

the step size is reduced to 10 and 5 dB, respectively. The next test

tone is 1.5 kHz and is presented at a level of −20 dB below the last

intensity tested if the last tested sound was heard. If not, a level of

+20 dB was used. Overall, for all 11 audiometric frequencies tested,

both positive and negative responses were obtained. Hence, a min-

imum of 22 test stimuli is used.

For the audiometric frequencies at the extreme ends of the

audiogram (i.e., 0.125 and 8 kHz), the “increase” step size was

reduced to 10 dB instead of 20 dB. This allowed a finer estimate of

those thresholds, which in turn lowered the number of test points

during the subsequent Testing phase (see section below).

As described in Schlittenlacher et al.,28 the positive and neg-

ative responses provide a first approximation of the audiometry for

estimating the audiogram using a Gaussian process (GP) classi-

fier.37 This classifier provides a Gaussian distribution of response

probabilities for all intensity (range: −20 to 90 dB, unit: 1 dB) and

frequency combinations (range: 0.125–8 kHz, unit: 0.1 octave).

The frequency/intensity combination for which the average

probability according to the GP classifier is closest to 0.5 is con-

sidered the current audiogram estimate. The GP incorporates prior

knowledge within its covariance function (kernel) − covariance

between different audiometric points. For instance, frequency‐

wise, a squared exponential kernel with a length scale of 0.5

octaves captures the fact that thresholds at adjacent frequencies

are correlated.28,38 On the intensity side, the GP linear kernel

captures the fact that the probability of a sound being heard

increases with increasing intensity. This parameterization of the

GP function, along with the experimentally obtained responses,

are used to generate a latent function, processed via a likelihood

function. The GP linear kernel initially has a zero mean, which is

equivalent to agreeing on a Bayesian prior threshold level of 0 dB

HL before any measurement.

In line with Schlittenlacher et al.,28 the likelihood function of the

GP takes the form of a Gaussian cumulative density function, with a

set standard deviation of 3 dB, considered to approximate the slope

of the psychometric function. The likelihood function was scaled to

cover probabilities between 0.01 and 0.99. Subjects are assumed to

make “errors” in their responses (misses or false alarms); for example,

due to accidentally pressing or not the answer button on average in 1

out of 100 trials. Since our stimuli are relatively long (eight pulsed

tones, in comparison to three tones used in Schlittenlacher et al.,28

the error rate is expected to be lower than what has been previously

observed (miss rate measured in 28 at 1.2% and false alarm rate

measured at about 4.1%).

Testing phase

In line with Schlittenlacher et al.,28 the Bayesian active learning

mechanism uses the probabilities given by the GP function to select

the next tone intensity and frequency to maximize the mutual

information between the expected response and the GP estimate.39

I y θ x H y x D E H y x θ( *; | *) = ( *| *, ) − ( [ *| *, ])θ p θ D( | )∼ with the first term

on the right being the expected response entropy, the second term is

the expected conditional response entropy given the GP function

estimate, H is the Shannon entropy,40 D are the answers already

obtained, x* represents the frequency and signal intensity level for

the next test, y* represents the expected answer, and θ represents

the GP function.

Choosing the intensity/frequency pair in such a way that mini-

mizes uncertainty23,28 also allows the tested frequencies to vary

widely from one another (i.e., back‐to‐back frequencies can be far

apart), thus avoiding predictability issues ‐ for instance, with non-

cooperative subjects. We should note that the use of a long series of

pure tones with eight pulsed tones limits any attentional issue that

elderly subjects might experience.

Stopping criteria

Two stopping criterion values were implemented. The first criterion

was fixed at a minimum of 50 trials and a maximum of 70 trials

following the end of the Initialization phase. The second criterion was

based on the uncertainty of the threshold prediction, which is esti-

mated as ±1 SD around the threshold estimated by the model. The

criterion is reached when the biggest uncertainty is <6 dB. These

stopping criterion values were optimized to ensure: (1) the highest

possible reliability, i.e., stopping the tests when additional informa-

tion becomes only weakly informative,26,28 and (2) compatibility with

daily clinical practice, and to avoid the impact of high‐level factors. In

fact, this maximum number of trials was fixed to limit the duration of

the tests for subjects with relatively high response variability.

Moreover, data from Schlittenlacher et al.28 showed that the root

mean square difference (RMSD) fell below 4 dB as early as 30 trials

following Initialization, and below 2 dB after 60 trials. Finally, no

statistically significant difference was obtained beyond 70 trials

independently of the testing method used (see Figure 6 of

Schlittenlacher et al.28). In the current study, although we did not

measure the exact number of trials for each subject, the overall

minimum number of trials was 72 (22 trials minimum for the Initial-

ization phase and 50 trials minimum for the Testing phase).

General safety limits for automated audiometry procedure

As the main aim of this improved ML method is to test a wide range

of NH and HI listeners in a fully automated manner, we first estab-

lished some safety limits in terms of the maximum stimulus level to be

presented to all subjects. Hence, the maximum stimulation level was

set at 90 dB HL (the chosen equipment allowed this intensity level to

be reached, even at 125 and 250Hz) and the minimum stimulation

level was set at −20 dB HL. If one of these intensity limits is reached

during the Initialization phase, the protocol is to move to the next test

frequency.

WALLAERT ET AL. | 5



Next, to test subjects with severe hearing loss with maximum

safety in terms of high‐intensity sound exposure, the variation inten-

sity step is reduced to 5 dB during the Initialization phase when the

stimulus intensity level exceeds 80 dB HL, to guarantee that HI sub-

jects are not presented with excessively high sound levels. This limits

auditory overstimulation and uncomfortable levels that could occur

due to loudness recruitment (i.e., abnormally rapid growth of the

sensation of sound force in the presence of hearing loss). Similarly,

during the Testing phase following Initialization, when the stimulation

intensity to be presented is above 80 dB HL, a safety limit is imposed

such that the stimulation intensity cannot be higher than 5 dB with

respect to the last point tested within the concerned octave.

These limits are different from those used in Schlittenlacher

et al.28 (maximum level of 77 dB HL and minimum level of −10 dB

HL), but it allows us to test listeners with severe hearing loss. While

Song et al.24 used −20 to 100 dB HL limits, the transducers used here

do not allow for such a high stimulation level, especially at low fre-

quencies, considering the maximum distortion rate set forth in IEC

60645‐1:201736 for type 2 audiometers.

Addition of positive and negative transient responses during

initialization phase when necessary

As our aim is to test a wide range of listeners as in daily clinical

settings, including those with cochlear dead zones and severe

hearing loss, previously unaddressed in published ML‐based audi-

ometry approaches, we implemented a second key change. More

precisely, during the Initialization phase, if the subject provides no

response for a subset of frequencies due to the presence of either

severe hearing loss or an unresponsive cochlear region, then, for the

subsequent Testing phase, the audiogram and uncertainty estimates

are only assessed for that particular subset of frequencies that the

subject can still hear. In fact, transient negative responses are added

automatically below the measurement range (i.e., below −20 dB HL)

when the test sound is perceived at −20 dB HL. Similarly, transient

positive responses are added automatically above the maximum

testable intensity (i.e., above 90 dB HL), to limit additional test

stimuli to be presented beyond this level during the Testing phase.

These transient responses constrain the threshold search interval

zones during theTesting phase. In fact, if no response is obtained on

more than two consecutive audiometric frequencies following the

Initialization phase, these frequencies are not tested during the

Testing phase.

Those transient positive and negative responses (when present)

are not taken into account for the final audiogram calculation and

those points are highlighted as transient responses in the audiogram

display. No such implementation was available in previous ML‐based

audiometry approaches.

Automated contralateral masking during automated audiometry

procedure

Importantly, for automated audiometry tests to be fully autonomous,

we have also implemented automated contralateral masking in con-

trast to the ML‐based audiometry approach described in

Schlittenlacher et al.28 (howeversee Heisey et al.29). Contralateral

masking prevents cross‐hearing and should be applied in cases of

asymmetric hearing loss, or conductive, or unilateral hearing loss.

Several assumptions were made here for the calculation of the

masking noise levels, in line with audiometry standards and guide-

lines,19,41 as well as the literature.

The standard protocol implemented on the current improved ML

audiometer is to always apply a roving contralateral masking using

narrow‐band noise when the test stimulus to be presented is over

35 dB HL.42 The maximum masking intensity is set at 80 dB HL.

Masking noise began randomly in the 1–3 s interval before the onset

of the pure‐tone sequence. This ensures that inadvertent response

button presses at the onset of the masking noise are not considered

as the subject actually hearing the test stimuli. The masker remained

present for a total of 5–8 s. The noise ramped on for 70ms at the

beginning of the intersequence interval and ramped off during the

final 70ms. In Heisey et al.,29 an automated masking procedure was

implemented and masking noise began randomly in the 250–1500ms

before the onset of the test sound. Pilot data (not shown here)

suggested that this was too short, especially for elderly subjects, and

led to a high number of false alarms.

Like for manual audiometry, for each test sound, an efficacy

criterion (i.e., the minimum masking intensity necessary to effectively

mask the contribution of the contralateral nontested ear19) and a no‐

overmasking criterion (i.e., the maximum masking intensity applicable

to the contralateral or nontest ear above which the masking noise

could be heard by the test ear and may impact the detection of the

test stimuli19) are calculated to determine the masking intensity

needed for the nontest ear.

The efficacy criterion (Meff, in dB) is calculated for air‐conduction

audiometry as follows:

Meff = PL − IA −Masking Min + ABG of NTE.

The no‐overmasking criterion (Mnov, in dB) is calculated as follows:

Mnov = PL −ABG of TE + IA −Masking Max.

(Key: TE, test ear,; NTE, nontest ear; ABG, air bone gap, PL,

presentation level; IA, interaural attenuation).

The final Masking value is determined as follows:

1. If Meff >Mnov, the masking value used is Meff.

In this case, a warning message appears on the software

interface at the end of the test stating that “the thresholds obtained

may be adversely affected by contralateral masking. Ipsilateral

Rainville masking43 is recommended.”

2. If Meff =Mnov, the masking value used is Meff.

3. If Meff <Mnov, the masking value used is the arithmetic mean of

Meff and Mnov.

The Masking Max is set at 0 dB and refers to the maximum

signal‐to‐noise ratio at the level of the (inner) test ear that ensures

detection of the test stimuli despite the presence of masking noise in

the nontest ear. In fact, pure‐tone detection is still possible at a

signal‐to‐noise ratio of around −5 to −10 dB in the presence of a

narrow‐band masker.44
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The Masking Min is set at −20 dB and refers to the minimum

signal‐to‐noise ratio observed at the level of the (inner) nontest ear to

ensure full masking of the nontest ear.

In fact, the Masking Max currently at 0 dB could be set lower (at

~−5 or −10 dB) and the Masking Min currently at −20 dB could be set

higher (at ~−10 or −15 dB). Together, this provides an overall

~10–20 dB range allowing for adequate masking considering the

presence of unknown parameters.

The value of the Interaural Attenuation (IA, in dB) used to cal-

culate masking is determined as a function of the specific on‐ear

transducer (TDH 39 tested here; see Methods section "Material and

Calibration") used to perform the audiometry test, and is also

dependent on the test frequency. IA values available from the liter-

ature have been implemented,42,45,46 and when these IA values are

unknown for a given on‐ear transducer, the default value applied is

50 dB, which corresponds approximately to the IA value observed for

the different on‐ear transducer types, averaged over all frequencies.

The ABG of the nontest ear refers to one of the following:

1. When no previous audiometry results are available (as in the

current study for the first ear tested per subject), a 40 dB ABG

assumption is adopted.

2. When only the air‐conduction threshold is available (as in the

current study for the second ear tested per subject), ABG is

defined as being equal to the estimated air‐conduction threshold

at the frequency tested divided by a coefficient (see example

cases in Supporting Information S1: Note 2), depending on the

suspected hearing loss etiology from the result of the Lateraliza-

tion test. If there is no evidence to suggest a conductive hearing

loss, the ABG of the NTE is estimated from the air conduction

pure‐tone threshold divided by a factor [3 + [(Threshold of NTE/

120)*2]]. When a conductive hearing loss is suspected, the divi-

sion coefficient is [1 + (Threshold of NTE/120)].

The ABG of the test ear is unknown in the absence of bone‐

conduction thresholds. Here we adopted the worst‐case assumption

for the calculation of masking, that is, cases whereby the risk of con-

ductive hearing loss is maximal. Clinically, this maximum audiometric

ABG for any given frequency is considered to be 60 dB HL.47–49 Hence,

this maximum value was systematically used for the current study.

Supporting Information S1: Note 2 provides three example cases

to illustrate the respect of both the efficacy and no‐overmasking

criteria. In addition, for all three example cases provided, we compare

masking calculations as applied in the current study, as well as the

masking calculation used by Heisey et al.,29 whereby the masking

value is always computed as 40 dB below stimulus presentation level.

Overall, this latter method seems inadequate for sufficient masking.

Measurement of thresholds

Although the two manual audiograms (Reference and manual

improved ML audiometer) were obtained using the same manual

audiometry procedure, they differed with regard to the following:

(1) the headphones used despite the calibration of both types

of headphones and (2) the audiometric booths used for testing,

although both were double‐walled, sound‐proof audiometric

booths.

On the other hand, the automated improved ML audiometer

differed from the two manual audiograms as it assessed continuous

threshold estimates in terms of frequency and provided confidence

interval estimates. For comparison purposes, the thresholds of

the automated improved ML audiometer were discretized to the

conventional audiometric frequencies. Importantly, the manual

measures differed from the automated measures with regard to the

threshold definition. The two manual audiometry approaches mea-

sured the subject's threshold using the asymmetric up–down pro-

cedure. In contrast, the automated improved ML method defined

the threshold as the predicted 50% audible contour, in line with

Schlittenlacher et al.28

Statistical tests

All group‐level statistical tests and effect size calculations were

performed using JMP Pro 14.0 on a Mac platform. The Shapiro–

Wilk test of normality was performed for all data sets. Non‐normally

distributed data was examined using nonparametric tests. Pairwise

comparisons were carried out using the Steel–Dwass method for

nonparametric comparisons. To compare more than two groups,

one‐way analysis of variance rank tests (Kruskal–Wallis H test) were

used. To assess agreement between testing methods and test–

retest measures, intra‐class correlation (ICC) measures were

obtained using a one‐way random‐effects model. For posthoc

multiple comparisons analyses, α values were Holm–Bonferroni‐

corrected.

Results

Figure 1A shows examples of audiograms measured for four example

ears using the automated ML method (the black line indicates the

50% contour and the dashed line indicates the uncertainty estimate).

Figure 1B shows examples of audiograms measured for three distinct

representative ears using the three methods (i.e., manual Reference

audiogram: black line; manual improved ML method: blue line;

automated improved ML method: green line): example ear 1 with NH

thresholds (Figure 1B; top), example ear 2 with sloping high‐

frequency hearing loss (Figure 1B; middle), and example ear 3 with

hearing loss at most frequencies (Figure 1B; bottom). All thresholds

measured using the manual Reference method are shown in Figure 1C

(thin lines indicate individual ears, thick line indicates mean, shaded area

indicates SD). Similarly, thresholds using the manual and automated

improved ML methods are shown in Figure 1D,E, respectively. For

comparison, all mean ± 1 SD thresholds using the three methods are

shown in Figure 1F.
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Comparison of threshold values

The mean raw signed differences for all 109 subjects and all 218 ears

are shown in Table 2 (for individual frequencies, see Supporting

Information S1: Table 2). These values compare favorably to two

audiometry measurements performed under identical conditions (see

Margolis et al.21; SD of 5.5 dB using the same audiometer, same

location, and same experimenter; see also Mahomed et al.,20

Gosztonyi et al.,50 Schmuziger et al.,51 and Ishaq et al.).52 The mean

absolute differences are also shown in Table 2 (for individual

F IGURE 1 Comparison of air‐conduction audiometry measures using three different methods. (A) Four examples of fully automated
ML‐based air‐conduction pure‐tone audiograms. The red and green squares indicate each subject's negative and positive responses,
respectively. The thick black lines correspond to the continuous threshold estimate and the dashed thin lines surround the area within which
50% is within one standard deviation of the highest probability, according to the GP classifier. Transient responses (gray squares) are not taken
into account for the 50% audible contour. (B) Air‐conduction pure‐tone audiograms for three representative subjects tested using the three
methods as follows: (1) manual reference audiometer (black), (2) manual improved ML audiometer (blue), (3) automated improved ML audiometer
(green). The continuous automated audiometry thresholds were discretized to the 11 frequencies manually tested for comparison. (C) Mean and
SD of audiograms for the 218 ears tested using the manual Reference audiometer (thin lines correspond to individual ears, thick line corresponds
to mean, shaded area indicates 1 SD). (D) Mean and SD of audiograms for the 218 ears tested using the manual improved ML audiometer.
(E) Mean and SD of audiograms for the 218 ears tested using the automated improved ML audiometer. (F) Comparison of all means and SDRR
with the three methods.
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frequencies, see Supporting Information S1: Table 3). The fully au-

tomated ML method differed from the Reference audiometry

thresholds by ~6 dB on average, and the manual and automated ML

methods differed by only ~3 dB.

Performance comparisons

Next, performance or accuracy comparison between the three dif-

ferent methods was carried out by computing the RMSDs in dB HL

from raw threshold differences. The overall RMSD for all subjects

tested here when comparing the automated ML‐audiometer with the

Reference audiometer = 6.76 dB (NH = 5.53; HI = 6.70; see Support-

ing Information S1: Table 4). When comparing the manual and au-

tomated ML audiometer, the overall RMSD = 4.28 dB (NH = 4.01;

HI = 4.31). The two manual approaches (Reference and manual ML

audiometer) had an overall RMSD = 6.71 dB (NH = 4.88; HI = 6.66). In

Table 3, all differences and RMSD values are compared with previous

ML‐based audiometry approaches developed.24,26,28

Statistical comparisons

First, we checked if the threshold distribution at the individual tested

frequencies using the three different methods was normally distrib-

uted using the Shapiro–Wilk test of normality. As the data sets were

not sufficiently Gaussian (Shapiro–Wilk test of normality), we chose

to perform nonparametric statistical tests.

Next, to assess the presence of statistically significant differ-

ences, we compared the raw thresholds from the three audiogram

measures (manual Reference, and manual and automated

ML audiometer). No significant difference was found between

thresholds from the three methods (Kruskal–Wallis H test,

χ2(2) = 3.95, p = 0.139; for posthoc comparison for individual fre-

quencies, see Supporting Information S1: Table 5). Moreover, no

significant difference was found when comparing: (1) the

manual ML audiometer and Reference (Steel–Dwass, p = 0.132), (2)

the automated ML audiometer and Reference (Steel–Dwass,

p = 0.361), and (3) the manual and automated ML audiometer

(Steel–Dwass, p = 0.824).

We also used a two‐way random‐effects (inter‐method reli-

ability) and expected mean squares to look at the reliability between

the three methods (manual Reference, and manual and auto-

mated ML audiometer). The main effect of the methods confirmed

good agreement between the three methods (F ratio = 2.97;

p = 0.0522).

PTA comparisons

The air‐conduction pure‐tone audiogram is often summarized for

each ear with a pure‐tone average (PTA) of thresholds, measured for

TABLE 2 Overall performance differences computed with the first procedure minus the second one listed (n = 218 ears).

A pair of comparisons for all frequencies tested
Raw differences
(mean ± SD, dB HL)

Absolute differences
(mean ± SD, dB HL)

Manual ML audiometer versus Reference 2.97 ± 7.93 5.65 ± 6.30

Automated ML audiometer versus Reference 1.89 ± 7.87 5.64 ± 5.81

Manual versus automated ML audiometer −1.08 ± 4.42 3.18 ± 3.25

Abbreviation: ML, machine learning.

TABLE 3 Comparison of accuracy with previous ML‐based audiometry (signed difference computed with the first procedure minus
the second one listed).

Automated ML‐based audiometry versus Reference

Current study (n = 218 ears)
Song et al.24

(n = 42 ears)
Barbour et al.26

(n = 42 ears)

Schlittenla-
cher et al.28

(n = 40 ears)

Signed difference −0.011 ± 5.61 dB –0.969 ± 6.02 dB Manual ML audiometer versus Reference = 2.97 ± 7.93 dB

Automated ML audiometer versus Reference = 1.89 ± 7.87 dB
Manual versus automated ML audiometer = −1.08 ± 4.42 dB

Absolute difference 4.16 ± 3.76 dB 3.24 ± 5.15 dB Manual ML audiometer versus Reference = 4.19 ± 5.21

Automated ML audiometer versus Reference = 4.53 ± 5.01
Manual versus automated ML audiometer = 3.18 ± 3.25

RMSD 5.58 dB NH: 4.9 dB
HI: 7.2 dB

Manual ML audiometer versus Reference = 6.71 dB ± 14.93
Automated ML‐audiometer versus Reference = 6.76 dB ± 14.41

Manual versus automated ML‐audiometer = 4.28 dB ± 8.50

Abbreviations: HI, hearing impaired; ML, machine learning; NH, normal hearing; RMSD, root mean square difference.
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a subset of frequencies (0.5, 1, 2, 4 kHz; see guidelines35). The dis-

tribution of hearing status computed from the PTA is shown in

Table 4 for the three methods. Detailed analysis of the ears not

classified similarly by the 3 methods revealed that: (1) for the

manual ML audiometer, PTA differences varied between 1.25 and

2.5 dB HL with respect to the Reference audiometer values, and (2)

for the automated ML audiometer, PTA differences varied between

0.5 and 2.2 dB HL with respect to the Reference audiometer values.

Moreover, the intra‐class correlation (ICC) was used to assess the

agreement between the PTA values obtained using the three meth-

ods (manual Reference, and manual and automated ML audiometer).

We found a high ICC value (i.e., close to 1), indicating high agreement

between the three methods (ICC value obtained using a one‐way

random‐effects model = 0.977).

Sensitivity and specificity analysis

Sensitivity and specificity values are often calculated for new testing

procedures and provide interesting metrics for hearing screening

purposes. In fact, sensitivity is calculated based on how many people

have the disease in comparison to the Reference audiometer

results.53 It is also referred to as the true positive rate. With a fixed

decision criteria to conclude hearing loss when PTA > 20 dB, the

sensitivity of both manual and automated ML audiometer = 100%.

Importantly, these results demonstrate that the pathology is never

missed by both measures of the ML audiometer (False negatives = 0).

Specificity is calculated based on how many people do not have the

disease in comparison to the Reference audiometer results. With the

same criteria as above, the specificity of manual ML audiometer =

81.25% and automated ML audiometer = 84.38%. These results

demonstrate that the pathology is attributed to certain subjects

who are not classified as hearing loss by the gold standard, that is,

the Reference audiometer (False positives = 6 or 5 ears over a total

of 218 ears for manual and automated ML audiometer, respectively;

~2%–3%). Finally, the positive predictive value of the manual ML

audiometer = 96.88%, and the automated ML audiometer = 97.38%.

Although the above results are from the comparison of the ML

audiometer with the Reference audiometer (i.e., comparison of

different equipment), the Sensitivity and Specificity when compar-

ing audiometry from exactly the same equipment (i.e., manual vs.

automated ML audiometer) correspond to 99.48% and 100%,

respectively.

Duration of tests

For all subjects tested, the automated ML audiometry took on average

13.73 ± 2.80min (mean ± SD; min–max = 9.10–19.90) to obtain contin-

uous audiometry thresholds with 1‐dB precision, as well as uncertainty

estimates. The manual Reference audiometry and manual ML audiom-

etry took an average of 7.67 ± 1.89min to obtain discrete thresholds at

11 frequencies with 5‐dB precision. Even though the manual audiom-

etry tests are faster, the fully automated ML‐based audiometry does not

require the presence of the hearing specialist and can therefore be

carried out before seeing the hearing specialist. In addition, the auto-

mated method provides continuous audiometry thresholds instead of 11

discrete thresholds for the two manual methods. The maximum test

time measured here at ~20min for the automated ML audiometry

indicates compatibility with daily clinical practice while avoiding the

impact of high‐level factors, such as listener fatigue.

STUDY 2: PERFORMANCE OF A FAST
ML‐BASED AUDIOMETRY

For screening purposes, we developed a fast version of the automated

improved ML audiometry (detailed in Study I) that can be used in both

medical and nonmedical settings; for example, for hearing screening in

schools or hearing follow‐ups during the course of certain medical

treatments. In the case of screening, our reasoning was that the number

of trials during the Testing phase could be reduced for a less precise

audiogram to reduce the testing time from the regular ML‐based method

described in Study I (average duration estimated: 13.73 ± 2.80min).

Methods

Subjects

A subset of subjects from Study I also participated in Study II (n = 43,

22 women), which was run on the same day following all tests of

Study I. The mean age of subjects tested was 55.3 ± 12.03 (min–max

age:18–88 years) and the hearing status of the tested ears was dis-

tributed as follows: 34 NH ears and 52 HI ears (HI when PTA > 20 dB

HL from manual Reference audiometry measures).

Manual audiometry procedure

See Methods section "Manual audiometry procedure" of Study I.

Fast automated ML audiometry procedure

The procedure is the same as the one described in Study I (see

Methods section "Automated ML audiometry procedure" in Study I),

except for the first stopping criterion used. More precisely, the same

TABLE 4 Hearing status from PTA distribution.

Classification of
hearing status Reference

Manual ML
audiometer

AutomatedML
audiometer

NH hearing
PTA ≤ 20 dB HL

n = 32 ears n = 26 ears n = 27 ears

Hearing loss
PTA > 20 dB HL

n = 186 ears n = 192 ears n = 191 ears

Abbreviations: NH, normal hearing; PTA, pure‐tone average.
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Initialization phase was used as for study I. During the Testing phase,

to decrease the test duration, the first stopping criterion was fixed at

a minimum of 25 trials and a maximum of 45 trials. The second

stopping criterion used during the Testing phase was similar to the

one described in Study I.

Results

Comparison of threshold values for fast automated ML
audiometry

The mean raw and absolute differences between the fast

automated ML audiometry measures and the manual Reference

measures were −4.17 ± 7.02 dB and 6.46 ± 4.99 dB HL, respectively

(see Supporting Information S1: Table 6). While those differences are

higher than the ones obtained for the regular automated ML audi-

ometer from Study I (raw difference: 1.89 ± 7.87 and absolute differ-

ence: 5.64 ± 5.81), they remain within 15 dB of the manual Reference

measures. Moreover, the raw audiometric thresholds obtained using

the two methods (i.e., fast automated ML vs. Reference) did not differ

significantly for all frequencies (Kruskal–Wallis H test, χ2(2) = 3.57,

p = 0.059). The ICC was used to assess the agreement between the

PTA values obtained using the two methods (manual Reference and

fast automated ML). We found a high ICC value (i.e., close to 1) indi-

cating high agreement between the two methods (ICC value obtained

using a one‐way random‐effects model = 0.991).

Duration of tests

For all subjects tested here, the duration of the fast automated ML

audiometry test was 9.85± 2.36min (mean ±SD; min–max=4.33–14.90)

to obtain continuous audiometry thresholds with 1‐dB precision, as well

as uncertainty estimates. Reducing the testing phase to a maximum of 45

trials instead of 70 trials (as in Study I) led to a gain of ~4min. While the

duration of the fast automated ML audiometry test is still higher than

what has been reported for manual and conventional audiometry tests

(5–10min to obtain discrete thresholds,12 as well as for other ML‐based

methods with a fixed masking procedure29 (5–6.9min), such a fast ML‐

based automated test can be run in the absence of a hearing specialist or

health professional, and with a wide range of HI listeners.

STUDY 3: TEST–RETEST RELIABILITY OF
ML‐BASED AUDIOMETRY

Methods

Subjects

To examine the test–retest reliability of the regular, automated ML‐

based audiometry method described in Study I, a subset of subjects

from Study I also participated in Study III (n = 50 subjects, 22 women).

Unlike Study II, which was run on the same day as Study I, Study III was

performed on a different day (spaced by a maximum of 3 months from

Study I). No notable otological history could be identified between

Studies I and III for all subjects. The mean age of subjects tested was

60.1 ± 12.7 years (min–max age: 18–95 years) and the hearing status of

the tested ears was distributed as follows: 16 NH ears and 84 HI ears

(HI when PTA > 20 dB HL from Reference audiometer).

In parallel, to examine the cross‐clinical agreement between man-

ual Reference audiometry, we examined the audiograms of a separate

group of 134 subjects (i.e., those subjects did not participate in Study I;

77 women). More precisely, two different hearing practitioners in two

different clinics in France measured the hearing thresholds of the same

group of subjects, using the same general testing protocol (i.e., the

modified Hughson–Westlake procedure), but with different testing

materials, although they have all been previously calibrated for audi-

ometry tests. The mean age of subjects tested was 62.17 ± 17.04

(min–max: 18−95 years) and the hearing status of the tested ears was

distributed as follows: six NH ears and 262 HI ears (HI when PTA>

20 dB HL from practitioner 1 manual Reference audiometry measures).

Assessing test–retest reliability of automated ML
audiometry

The automated ML audiometry (described in Study I) was run twice

for a subset of 50 subjects in the same conditions (i.e., same trans-

ducer, same test booth).

Assessing cross‐clinical agreement with Reference
audiometry

To examine the agreement between audiograms performed in clinical

conditions using different Reference‐type audiometers and transducers,

we examined the audiograms of 134 subjects tested by two different

hearing practitioners during routine clinical assessment and management

protocols. The first hearing practitioner used a calibrated MADSEN Itera

II audiometer with TDH 39 or ME‐70 headphones. The second hearing

practitioner used either a calibrated Interacoustics AD528 audiometer

with DD45 headphones; or a calibrated Siemens Unity 3 with Sennheiser

HDA 300 headphones. The order of tests performed by the two hearing

practitioners was randomized. All manual audiometry procedures were

carried out with appropriate masking (in line with Favier et al.19).

Results

Test–retest reliability of automated ML audiometry
measures

For all 50 subjects tested, Figure 2A shows the mean of the test‐

retest thresholds measured with the automated ML audiometer
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described in Study I (individual lines show individual ears, test

thresholds are in black, and retest thresholds are in orange). The

mean signed difference between the two automated ML audiometry

measures was 0.31 ± 4.38 dB and the mean absolute difference was

2.92 ± 3.27 dB HL (Table 5, for individual frequency comparisons, see

Supporting Information S1: Table 7). Moreover, no significant dif-

ference was observed between the test–retest audiometry measures

(Kruskal–Wallis H test, χ2(1) = 0.025, p = 0.874; all posthoc differ-

ences for individual frequencies > 0.05, Supporting Information S1:

Table 8). We also used a two‐way mixed effects to look at the test–

retest reliability for the automated ML‐based audiometry measures.

The main effect confirmed good agreement between the test‐retest

measures (F ratio = 0.003; p = 0.954). Moreover, the ICC was used to

assess the agreement between the test‐retest PTA values. We found

a high ICC value (i.e., close to 1) indicating high agreement between

the test–retest PTA measures (ICC value obtained using a one‐way

random‐effects model = 0.995).

The overall RMSD for the test–retest automated ML audiometry

measures was equal to 4.39 dB (Table 6; NH: 3.61; HI: 4.50; see also

Supporting Information S1: Table 9). Table 6 shows the test–retest

differences and RMSD values measured here in comparison with

previous ML‐based audiometry approaches developed.24,26,28

Cross‐clinical agreement of Reference audiometry
measures

For all 134 subjects tested, Figure 2B shows the mean of the

thresholds measured by two hearing practitioners (individual lines

show individual ears, practitioner 1 thresholds are in black, practi-

tioner 2 thresholds are in orange). The mean signed difference

between the two Reference audiometry measures for all subjects was

−4.87 ± 10.33 dB and the mean absolute difference between the two

Reference audiometry measures was 8.13 ± 8.02 dB HL (Table 5, for

individual frequency comparisons, see Supporting Information S1:

Table 10). Furthermore, the two measures differed significantly,

suggesting weak cross‐clinical agreement (Kruskal–Wallis H test,

χ2(1) = 17.65, p < 0.0001; significant posthoc differences at 500,

1000, 4000, and 8000Hz; see Supporting Information S1: Table 11).

The overall RMSD for the two manual Reference audiometry mea-

sures was equal to 11.41 dB (Table 6; NH: 8.98; HI: 11.46; see also

Supporting Information S1: Table 12). Nevertheless, the ICC used

to assess the cross‐clinical agreement revealed a relatively high ICC

value of 0.916 (obtained using a one‐way random‐effects model) and

suggests relatively high agreement between the cross‐clinical PTA

measures.

F IGURE 2 Test–retest comparisons of automated ML audiometry measures and cross‐clinical agreement of Reference audiometry
measures. (A) Mean of test–retest audiograms measured with the automated ML audiometer from Study I (thin lines correspond to individual
ears, thick line corresponds to mean; test audiograms are shown in black, and retest audiograms are shown in orange). (B) Mean of the two
Reference audiograms measured manually by two different practitioners (thin lines correspond to individual ears, thick line corresponds to mean;
Practitioner 1 data are shown in black and Practitioner 2 data are shown in orange). ML, machine learning.

TABLE 5 Overall test–retest reliability of automated ML audiometry and cross‐clinical agreement in manual Reference audiometry
measures (different practitioners and different equipment).

For all frequencies tested
Raw differences
(Mean ± SD, dB HL)

Absolute differences
(Mean ± SD, dB HL)

RMSD (Mean ± SD,
dB HL)

Test–retest reliability of automated ML audiometry, n = 100 ears −0.31 ± 4.38 2.92 ± 3.27 4.39 ± 7.99

Cross‐clinical agreement with different materials and practitioners,

n = 268 ears

−4.87 ± 10.33 8.13 ± 8.02 11.41 ± 21.34

Abbreviations: ML, machine learning; RMSD, root mean square differences.
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DISCUSSION

In the last decade, fully automated ML‐based audiometry approaches

have been increasingly proposed in the literature12,24–26,28,54 in an

effort to streamline the clinical examination process. Here, we extend

the approach developed and tested in Schlittenlacher et al.28: a non-

parametric approach to estimating the audiogram in a frequency‐

continuous manner using Bayesian estimation and ML classification.

Moreover, for fully automated tests to be used in clinical settings

without the need for a hearing practitioner, we applied three major

changes: (1) general safety limits during all automated audiometry

testing in an effort to extend the method developed by Schlittenlacher

et al.28 for safe testing of a wide range of NH and HI subjects, including

those with severe hearing loss; (2) addition of transient positive and

negative responses to constrain the audiometry Testing phase, to cater

for subjects with cochlear dead zones (or unresponsive regions) or

when the threshold is beyond the intensity limits of the transducers,

and (3) automated contralateral masking rules for improved threshold

measures extending beyond the method described in Heisey et al.29 In

the latter, the authors apply an automated masking method to their

ML‐based audiometry through the addition of masking noise presented

at a default masking value of 40dB below the test stimulus level.

However, as detailed in Supporting Information S1: Note 2, this

approach remains limited and is, in some cases, insufficient to mask

responses of the nontest ear (see Example Cases #1–3). In contrast, the

masking rules described here aim to cater to a wide range of HI lis-

teners. The main limit is that, in some cases, the efficacy criterion, that

is, the intensity level at which contralateral masking becomes effective,

is higher than the overmasking criterion, that is, the intensity level at

which masking is too loud to ensure correct detection of the test

stimulus. This configuration only occurs when using transducers with

low transcranial transfer for listeners with substantial ABGs. However,

this issue can be easily addressed by using inserts for air‐conduction

stimulation that limits the transcranial transfer (see Supporting Infor-

mation S1: Note 2, Example Case #3).

In Study I, we showed that automated measures of the

improved ML audiometer provide accurate hearing thresholds for air‐

conduction pure‐tone audiometry, not statistically different from

those obtained from a well‐established and conventional audiometer

(Table 2). Importantly, in Study I, we tested a large number of sub-

jects with a wide range of hearing status, including those with severe

hearing loss and asymmetric losses. In fact, the mean absolute dif-

ference between the automated ML‐based method and the con-

ventional Reference one was ~6 dB. Such raw and mean absolute

differences are in line with previously published ML approaches,24,28

as described in Table 3, and with other automated audiometry ap-

proaches in general.12,20 Finally, the high ICC also suggests very high

agreement in PTA values obtained using the three methods. Future

studies should aim to evaluate such automated ML‐based methods

on hard‐to‐test populations, including testing a larger number of

subjects with severe hearing loss.

In Study II, we showed that a fast automated ML‐based method

with fewer test trials may be used for screening purposes as the

difference between the fast automated ML‐based method and the

conventional Reference one was <15 dB (mean absolute differ-

ence ~7 dB). While the duration of ML‐based audiometry tests is not

faster for subjects as compared to manual conventional approaches,

it is important to note that test automation allows a key time save for

hearing professionals. Overall, such medical time save granted by test

automation should, in principle, allow hearing practitioners to address

a larger number of patients and decrease appointment waiting delays.

Thus, an audiologist may set up a first patient in a test booth,

including, provide all test instructions orally, answer any question

from the patient, and equip the patient with the transducers before

launching the automated test. During the entire testing time, the

audiologist does not need to be in the test booth of the first patient

and may use this time to set up a second patient in a different test

booth. All individual responses of the subject or patient are displayed

on the experimenter interface along with the 50% audiometric con-

tour and the uncertainty range, which allows the audiologist to en-

sure that the subject responded consistently.

Finally, in Study III, we showed that the test–retest reliability of

the automated improved ML approach was high, with no statistical

difference between the two measures and high ICC (Table 5). In fact,

TABLE 6 Comparison of test–retest reliability of automated ML audiometry method described here with previous ML‐based audiometry, as
well as the cross‐clinical agreement of manual Reference audiometry.

Song et al.24

(n = 42 ears)
Barbour et al.26

(n = 42 ears)
Schlittenlacher et al.28

(n = 40 ears)
Current study (n for automated ML audiometer = 100 ears;
n for Reference audiometer = 268 ears)

Signed difference 0.75 ± 6.29 dB –0.486 ± 7.15 dB Test–retest of automated ML audiometry = −0.31 ± 4.38 dB
Cross‐clinical agreement with manual Reference
audiometry = −4.87 ± 10.33 dB

Absolute difference 4.51 ± 4.45 dB 2.85 ± 6.57 dB Test–retest of automated ML audiometry = 2.92 ± 3.27 dB
Cross‐clinical agreement with manual Reference
audiometry = 8.13 ± 8.02 dB

RMSD 6.32 dB 6.9 dB Test–retest of automated ML audiometry = 4.39 ± 7.99 dB

Cross‐clinical agreement with manual Reference
audiometry = 11.41 ± 21.34 dB

Abbreviations: ML, machine learning; RMSD, root mean square difference.
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the mean absolute difference was ~3 dB. In comparison, the general

agreement between two audiograms measured manually in different

clinics using different conventional audiometers was particularly low

(~8 dB). It should be noted that this value does not reflect a true

“test–retest reliability” measure for the Reference audiogram as dif-

ferent hearing practitioners measured the hearing thresholds of the

same group of subjects, using the same general testing protocol (i.e.,

the modified Hughson–Westlake procedure), but with different ma-

terials that are nevertheless all calibrated to provide similar results.

This rather poor cross‐clinical agreement may be due to various

factors, including human variability (e.g., transducers used, calibration

performed, expertise of clinician, positioning of material, and general

testing method). Together, the results from all three studies confirm

the performance and reliability of an automated improved ML audi-

ometer within a heterogeneous hearing‐loss population.

A remaining challenge with ML‐based audiometry technologies is

to convince clinicians to use them to directly monitor their time gain,

and subsequently, assess the added benefits of higher audiometry

precision (1‐dB precision, uncertainty estimates, and continuous

thresholds along the frequency axis) and higher audiometry repeat-

ability as automated procedure implies fewer human errors and

variability in testing procedure. Estimating thresholds to 1‐dB preci-

sion along the full frequency axis may eventually lead to improved

and targeted patient follow‐up and improved hearing‐aid adjustment

parameters. Ultimately, such automated ML‐based audiometry may

facilitate close monitoring of hearing function in different settings,

including hospitals, workplaces, and assisted living facilities, and at all

stages of life, particularly during vulnerable periods (e.g., during

development, during the course of ototoxic treatments). Long‐term

monitoring of such ML audiometry approaches is key to prevent and

reduce as much as possible systematic errors by different users.

In Europe, automated techniques such as the AMTAS21 are

available to clinicians for use with adult patients but remain scarcely

used. One of the reasons may be due to the limited benefits of such

techniques, for example, they may not provide continuous estimates

of thresholds in frequency and predictable stimuli may not work for

uncooperative subjects.55 While ML‐based methods address this

disadvantage, such techniques do not allow the administration of

other audiometry tests, for example, speech audiometry tests with

automated annotation of patients’ responses. Thus, the time save

provided by such automated techniques may appear limited. In the

future, we aim to expand the current framework by including addi-

tional tests, such as bone‐conduction audiometry56 and speech

audiometry.9,10 In addition, most automated methods, including the

one described here, are unsuited for use with children.57 Hence, ML‐

based audiometry needs to be expanded to include child‐friendly

approaches. Furthermore, to optimize the overall clinical procedures,

future versions of ML‐based methods should take into account lis-

tener parameters, such as age and sex, medical history, and otological

examination results.58 Finally, ML may offer additional advantages,

such as automated evaluation of tympanic membrane images before

audiometry testing. Such a combination of methods and tests within

one medical device may offer a more unified and reliable diagnosis

for improved and personalized patient care, in addition to providing

large data sets for future hearing research.
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