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Abstract

Objective: Automated air-conduction pure-tone audiograms through Bayesian es-
timation and machine learning (ML) classification have recently been proposed in the
literature. Although such ML-based audiometry approaches represent a significant
addition to the field, they remain unsuited for daily clinical settings, in particular for
listeners with asymmetric or conductive hearing loss, severe hearing loss, or cochlear
dead zones. The goal here is to expand on previously proposed ML approaches and
assess the performance of this improved ML audiometry for a large sample of lis-
teners with a wide range of hearing status.

Methods: First, we describe the changes made to the ML method through the
addition of: (1) safety limits to test listeners with a wide range of hearing status, (2)
transient responses to cater for cochlear dead zones or nonmeasurable thresholds,
and importantly, (3) automated contralateral masking to test listeners with asym-
metric or conductive hearing loss. Next, we compared the performance of this
improved ML audiometry with conventional and manual audiometry in a large cohort
(n = 109 subjects) of both normal-hearing and hearing-impaired listeners.

Results: Our results showed that for all audiometric frequencies tested, no signifi-
cant difference was found between hearing thresholds obtained using manual
audiometry on a clinical audiometer as compared to both the manual and automated
improved ML methods. Furthermore, the test-retest difference was not significant
with the automated improved ML method for each audiometric frequency tested.
Finally, when examining cross-clinic reliability measures, significant differences were
found for most audiometric frequencies tested.

Conclusions: Together, our results validate the use of this improved ML-based

method in adult clinical tests for air-conduction audiometry.
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AUTOMATED AIR-CONDUCTION AUDIOMETRY WITH MASKING

INTRODUCTION

Nearly 20% of today's world population live with hearing loss (HL). Yet,
hearing disorders remain widely undiagnosed and untreated, leading to
central neural deficits, ranging from language acquisition impairments in
children! to dementia and depression in older populations.?® In fact,
hearing loss represents a major health and societal challenge, with
substantial economic impact. One of the main reasons that hearing loss
remains underdiagnosed today in developed countries is due to a lack
of available time for hearing healthcare professionals and a limited
number of trained hearing specialists: ENT doctors and audiologists. As
recently pointed out by Lesica et al.,* our hearing healthcare system still
relies on labor-intensive procedures and this is particularly true for the
hearing examination process, namely the conduction of audiometry
tests. Although recent technological innovation in clinical applications
through artificial intelligence and machine learning (ML) is starting to
have a widespread impact in different clinical settings, including the
detection of retinal diseases®® and medical imaging,”® they remain
rarely applied in the hearing healthcare system (e.g., speech audiometry

210 audiogram interpretation,'* and see Wasmann et al.*?).

tests,

In most countries, clinical hearing assessment relies on one pri-
mary measure, pure-tone audiometry, carried out manually by an ex-
pert health practitioner.*® Pure-tone audiometry consists of estimating
detection thresholds of pure tones presented in silence and at differ-
ent frequencies, hence providing a pure-tone audiogram for each ear.
The commonly used procedure is based on a modified version of the
Hughson-Westlake procedure.***° Precisely, this measurement is
performed frequency by frequency, with a first sound at a given fre-
guency being presented to the listener at an audible intensity level.
The intensity is then reduced in fixed increments until the listener no
longer responds, that is, the listener no longer hears the stimuli. The
intensity is then increased by a smaller increment until the listener
responds again. This procedure is then repeated for several such
reversals for each frequency and each ear.?¢"?

To save time, automated measures?® of pure-tone audiometry
have been proposed. In fact, some automated methods are currently
commercialized, for example, the Automated Method for Testing
Auditory Sensitivity (AMTAS) (Grason-Stadler, Interacoustics).?1?2
However, most commercialized automated methods have similar
drawbacks as the manual conventional method: (1) they measure the
audiogram for a discrete number of frequencies (sparse sampling may
lead to incomplete hearing assessment at untested frequencies), (2)
they use multiple tones presented at one frequency (leading to pre-
dictable tone detection), and (3) they use a minimum of 5 dB intensity
steps (higher precision may improve hearing aid fittings).

To address those issues, several authors have recently described
novel ways of measuring pure-tone audiometry through the use
of ML. 2 Such ML approaches (e.g., the Machine Learning Audiogram
[MLAG]) are based on both active sampling methods to rapidly esti-

2324 and probabilistic classification.?®

mate audiometric thresholds
Such ML-based audiometry provides continuous audiogram thresh-
olds in frequency, with 1-dB precision and uses test sounds that are

not predictable. More recently, an online version of the MLAG has

also been developed and validated,?® in addition to measures of
bilateral audiograms in both ears simultaneously,?” to further reduce
testing time. In parallel, Schlittenlacher et al.?® extended the work of
Gardner et al.2® by evaluating two distinct methods for continuous
audiogram threshold estimation: Yes/No and Counting of tone
pulses. The authors2® also incorporated an omission rate to account
for the listener's imperfect responses (i.e., misses and false alarms)
leading to improved threshold estimates.

To ensure the safe and adequate use of such ML-based audi-
ometry in routine clinical tests for adult listeners with hearing loss of
different etiologies, including conductive, sensorineural, or mixed
hearing loss of all degrees of severity from mild to severe losses, the
current work extends the ML approach described in Schlittenlacher

et al.2®

More precisely, we implemented the following key changes:
1. the addition of transient positive and negative responses to
constrain the audiometry test phase, to safely test listeners with
cochlear dead zones and severe losses (previously unaddressed),

2. the addition of automated contralateral masking rules to better

account for air-bone gaps (ABGs) than what has been previously
described,?’ and

3. general safety limits during automated testing to cater to a wide

range of normal-hearing (NH) and hearing-impaired (HI) listeners
in routine clinical settings.

Here, in the first study, we present the ML-based approach de-
veloped by Schlittenlacher et al.,%® the Yes/No ML method), to measure
pure-tone thresholds and highlight the different changes we applied in
the development of our improved ML-based method in a computer
software. Next, the performance of this improved ML audiometry with
both manual and automated pure-tone audiometry tests was compared
to conventional, well-established manual audiometry measures (“Ref-
erence”) in a large cohort of both NH and HlI listeners.

We also assessed the test-retest reliability of the automated and
improved ML audiometry when run twice on the same group of subjects.
For comparison, we also examined test-retest reliability in cross-clinical
settings. Although no time gain is demonstrated for the listeners with the
use of the automated and improved ML-based approach as compared to
manual conventional audiometry measures, test automation allows key
time gain for health professionals who no longer need to perform the
audiometry tests. Overall, these results validate the use of our auto-
mated and improved audiometry approach in daily clinical settings.

STUDY 1: PERFORMANCE OF AN
IMPROVED ML-BASED AUDIOMETRY
Methods

Subjects

The subjects (n=109) tested here were of a wide age range (see
Table 1) and were recruited from an audiology clinic in France. Only
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TABLE 1 Age, gender, and hearing loss distribution of subjects.

Subject distribution
Gender

Male
Mean = 1 SD Age (Minimum-
Maximum Age)

Female

All

Hearing status

NH

HI

Hearing loss severity

Mild hearing loss
(PTA between 21 and 40 dB)

Moderate hearing loss
(PTA between 41 and 70 dB)

Severe hearing loss
(PTA between 71 and 90 dB)

Hearing loss type
Conductive hearing loss

Mixed hearing loss

Sensorineural hearing loss

n=>53 male (49%)
65.8 +14.3 years (23-87 years)

n=>56 female (51%)
60.2 +17.7 years (18-95 years)

n =109 subjects
62.9 +16.3 years (18-95 years)

n=232 ears (15%)
16 female, 16 male
48.2 + 18.1 years (21-75 years)

n=186 ears (85%)
96 female, 90 male
42.2 +15.3 years (18-95 years)

n=100 ears (46%)
49 female, 51 male
63.6 +11.7 years (18-85 years)

n=78 ears (36%)
42 female, 36 male
67.8+17.8 years (18-95 years)

n=8 ears (4%)
5 female, 3 male
66.1+ 6.9 years (55-72 years)

4.3% of HI subjects

12.9% of HI subjects (with 5.4%
asymmetric loss)

82.8% of HI subjects (with
20.4% asymmetric loss)

Abbreviations: HI, hearing impaired; ML, machine learning; NH, normal
hearing; PTA, Pure-Tone Average.

adults were tested (>18 years) and all subjects spoke French fluently.
No exclusion criteria based on the etiology of hearing loss was used,
in order to not exclude any type of hearing loss. No subjects were
excluded from the study. To have an overall balanced population of
subjects, the past hearing status of subjects (when available) were
used to ensure recruitment of subjects with different hearing loss
severities. All subjects were fully informed of the goal of the study
and provided written consent before their participation. The study
was approved by the French Regional Ethics Committee (Comité de
Protection des Personnes Est Ill; S| number: 22.03364.000107).

Lateralization test

Prior to the audiometry tests, participants were asked to indicate on

which side they had the best hearing. Next, all subjects were tested

using a manual procedure, to test their lateralization with a Weber
test. Subjects were equipped with an ossi-vibrator positioned on the
forehead position and stimulated with pulsed pure tones at four
frequencies: 0.5, 1, 2, and 4 kHz with a 1s-long stimulus. For each
frequency, once the experimenter obtains the first positive response
from the subject, the intensity is increased by 15 dB to establish the
lateralization. To do so, subjects are asked to say which ear the sound
came from. The lateralization results for each frequency are stored
manually in the software interface by the experimenter, and the
results are used to automatically compute contralateral masking
levels for air-conduction pure-tone audiometry (see Methods Section
"Automated contralateral masking during automated audiometry

procedure").

Audiometry tests

Next, for all 109 subjects, hearing thresholds were measured for both

ears using three methods as follows:

1. Manual Reference audiometer,
2. Manual improved ML audiometer, and

3. Automated improved ML audiometer.

The order of presentation of the three tests was randomized. For
each subject, pure-tone audiometry was measured for individual ears
with either manual masking (for “Manual Reference” and “Manual
improved ML-audiometer,” see Methods section "Manual Audiome-
try") or an automated masking procedure (for “Automated improved
ML-audiometer,” see Methods section "Automated ML-Audiometry

Procedure") presented to the nontest ear.

Material and calibration

All testing took place in an audiometric booth. The Reference audi-
ometer used was a Natus-Otometrics Astera Il diagnostic audiome-
ter equipped with Sennheiser HDA 200 headphones mounted on
Peltor earmuffs.

The second audiometer used was a computer software deve-
loped by My Medical Assistant SAS (iAudiogram). All stimuli were
generated at a sampling frequency of 44.1 kHz and a resolution of
24 bits. The digital-to-analog conversion was performed by an audio
interface without acoustic attenuation. Test stimuli, as well as con-
tralateral masking stimuli, were presented via TDH 39 headphones
mounted on Peltor earmuffs.

For the lateralization test, we used the Reference audiometer
equipped with a Radioear B71 ossi-vibrator. Calibration was per-
formed for both devices by a Natus specialist technician, in accord-
ance with EN 1SO 389-8:2004%C and IEC 60318-1:2009,%! using a
Briel & Kjaer 4153 coupler, a Briel & Kjeer 0843 adaptor, a Briel &
Kjaer 0304 cone, and a Briel & Kjeer Artificial Mastoid Type 4930.
The sound pressure level was measured with a Briel & Kjaer 2250
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sound level meter. The sound pressure levels measured at the cou-
pler were converted into dB HL using EN 1SO 389-1:2017%2 and
389-8:2004,%C specifying the reference thresholds for the specific
headphones used.

ML-based audiometry system and interface

The improved ML audiometer is a computer-based software
(iIAudiogram) intended to be used by hearing professionals to obtain
diagnostic-quality air-conduction pure-tone audiometric data. Audi-
ometry can be performed both in a manual and in a fully automated
manner. Adult listeners of both genders may be tested, except for
subjects who are unable to cooperate due to age or other conditions
such as attentional disorders, or inability to follow instructions.

For all audiometry tests, the experimenter places the subject in a
test booth and instructs the subject to click on the remote-control
button when they hear a pure-tone sound in the test ear as shown on
the subject's monitor. Subjects are also told that noise may be pre-
sented to the nontest ear, but they should focus on the pure tones
and respond when they hear the pure tones in the test ear. Subjects
are also informed that pure tones may be presented in a random
manner with silent intervals in between and are reminded that their
task is to simply click the response button to let the experimenter
know when they hear the pure tones. Following these oral instruc-
tions, the experimenter equips the subject with the headphones and
launches the automated test before leaving the test booth. The ex-
perimenter can view the subject's responses on a second monitor
placed outside the test booth and may pause the test or restart it if
the subject has questions.

The ML-audiometer software was developed in Python and
includes an experimenter interface and a subject interface in French
language (see Supporting Information S1: Figure 1). On the experi-
menter interface, ML-based audiograms can be displayed as contin-
uous curves or transformed into discrete data points. For comparison
purposes for the current study, the thresholds of all ML-based
audiograms were discretized to 11 conventional audiometry
frequencies.

Manual audiometry procedure

Manual pure-tone audiometry test systematically begins by testing
the better ear declared by the subject, and if no better ear is declared,
the right ear is always tested first. The manual audiometry procedure
tests audiometry frequencies of 1, 1.5, 2, 3, 4, 6, 8, 0.75, 0.5, 0.25,
and 0.125kHz in the given order as recommended in French audi-
ometry guidelines.>® The intensity level varies in 5 (up) and 10dB
steps (down), also referred to as an asymmetric up-down proce-
dure®* The experimenter adjusts the frequency and level directly
from the conventional audiometer or the software until the threshold
is obtained. The subject's response when he/she presses the button
to indicate that he/she hears appears directly on the experimenter
interface. The experimenter saves the audiometric thresholds directly

on the interface. The duration of the stimuli for each trial is defined

by the experimenter and varies according to general audiometry

recommendations.18'33

Manual masking rules applied
The manual pure-tone audiometry test was performed following a set
of contralateral masking rules implemented in France and described

extensively in French audiometry guidelines.’

Hearing status of subjects

Following the conventional manual audiometry with the Reference
audiometer, a Pure-Tone Average (PTA) was computed for each ear
by averaging audiometric threshold measures at the following fre-
quencies: 500, 1000, 2000, and 4000 Hz (in line with the French
guidelines®®). The PTA of each ear was next linked to a specific
hearing status as shown in Table 1. The distribution of thresholds at
individual frequencies for all subjects is detailed in Supporting
Information S1: Table 1.

Automated ML audiometry procedure

For the automated ML-based audiometry, a total of eight pure pulsed
tones of the same level and frequency were presented for each trial.
The use of multiple pulses was chosen to promote pulse detection in
subjects with tinnitus that might interfere with pure-tone detection.
The duration of each pulse was 250 ms, including a 20 ms sinusoidal
ramp at the start and stop of each signal. The pulsed tones were
terminated as soon as the subject responded by pressing the
response button on the remote control. Silence intervals of 250 ms
separated each pulsed tone (inter-pulse interval). The duration
between two distinct test tones (interstimulus interval) was between
2 and 5.5 s with a jitter to avoid predictability effects.

These values differed from Schlittenlacher et al.?® (the Yes/
No ML method), in which the authors presented three tone pulses of
250 ms duration, with a 100 ms interval. Here, a higher number of
tone pulses and longer inter-pulse intervals made the task easier,
especially for elderly subjects (see also IEC 60645-1:2017%¢ on

interval lengths).

Initialization phase

Similar to the manual audiometry procedure, the automated pure-
tone audiometry test systematically begins by testing the better ear
declared by the subject, and if no better ear is declared, the right ear
is always tested first.

In line with Schlittenlacher et al.,?®

more precisely, the Yes/
No ML method, subjects are asked to press a response button only
when they hear a tone. Subjects are provided with a 4 s time window
to provide their answer. No answer within the 4 s window is counted
as a negative response, that is, the subject did not perceive the test
sound. Subjects are previously informed that tones are sent sto-
chastically and that some passages of several seconds may not
contain any sound. Next, similar to the initial test phase described in

I.,28

Schlittenlacher et a an Initialization phase is performed to
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approximate the hearing thresholds of the subject for the following
audiometric frequencies: 1, 1.5, 2, 3, 4, 6, 8, 0.75, 0.5, 0.25, and
0.125 kHz.

The first test sound is presented at a frequency of 1 kHz and an
intensity level of 60 dB HL. When the stimulus is heard, the intensity
level is decreased in 20 dB steps until it is no longer audible. If it is not
heard, the intensity level is increased by 20dB until the sound is
audible. This procedure is repeated until both a positive and a neg-
ative response are obtained. For intensity levels over 70 and 80 dB,
the step size is reduced to 10 and 5 dB, respectively. The next test
tone is 1.5kHz and is presented at a level of —20 dB below the last
intensity tested if the last tested sound was heard. If not, a level of
+20 dB was used. Overall, for all 11 audiometric frequencies tested,
both positive and negative responses were obtained. Hence, a min-
imum of 22 test stimuli is used.

For the audiometric frequencies at the extreme ends of the
audiogram (i.e., 0.125 and 8kHz), the “increase” step size was
reduced to 10 dB instead of 20 dB. This allowed a finer estimate of
those thresholds, which in turn lowered the number of test points
during the subsequent Testing phase (see section below).

As described in Schlittenlacher et al.,?®

the positive and neg-
ative responses provide a first approximation of the audiometry for
estimating the audiogram using a Gaussian process (GP) classi-
fier.®” This classifier provides a Gaussian distribution of response
probabilities for all intensity (range: -20 to 90 dB, unit: 1 dB) and
frequency combinations (range: 0.125-8 kHz, unit: 0.1 octave).
The frequency/intensity combination for which the average
probability according to the GP classifier is closest to 0.5 is con-
sidered the current audiogram estimate. The GP incorporates prior
knowledge within its covariance function (kernel)- covariance
between different audiometric points. For instance, frequency-
wise, a squared exponential kernel with a length scale of 0.5
octaves captures the fact that thresholds at adjacent frequencies
are correlated.?®38 On the intensity side, the GP linear kernel
captures the fact that the probability of a sound being heard
increases with increasing intensity. This parameterization of the
GP function, along with the experimentally obtained responses,
are used to generate a latent function, processed via a likelihood
function. The GP linear kernel initially has a zero mean, which is
equivalent to agreeing on a Bayesian prior threshold level of 0 dB
HL before any measurement.

In line with Schlittenlacher et al.,?® the likelihood function of the
GP takes the form of a Gaussian cumulative density function, with a
set standard deviation of 3 dB, considered to approximate the slope
of the psychometric function. The likelihood function was scaled to
cover probabilities between 0.01 and 0.99. Subjects are assumed to
make “errors” in their responses (misses or false alarms); for example,
due to accidentally pressing or not the answer button on average in 1
out of 100 trials. Since our stimuli are relatively long (eight pulsed
tones, in comparison to three tones used in Schlittenlacher et al. 28
the error rate is expected to be lower than what has been previously

28

observed (miss rate measured in at 1.2% and false alarm rate

measured at about 4.1%).

Testing phase
In line with Schlittenlacher et al.,?® the Bayesian active learning
mechanism uses the probabilities given by the GP function to select
the next tone intensity and frequency to maximize the mutual
information between the expected response and the GP estimate.>”

I(y*; 8Ix*) = H(y*Ix*, D) = Eg~pep)(H[y*x*, 6]) with the first term
on the right being the expected response entropy, the second term is
the expected conditional response entropy given the GP function
estimate, H is the Shannon entropy,*® D are the answers already
obtained, x* represents the frequency and signal intensity level for
the next test, y* represents the expected answer, and 6 represents
the GP function.

Choosing the intensity/frequency pair in such a way that mini-

mizes uncertainty?328

also allows the tested frequencies to vary
widely from one another (i.e., back-to-back frequencies can be far
apart), thus avoiding predictability issues - for instance, with non-
cooperative subjects. We should note that the use of a long series of
pure tones with eight pulsed tones limits any attentional issue that

elderly subjects might experience.

Stopping criteria

Two stopping criterion values were implemented. The first criterion
was fixed at a minimum of 50 trials and a maximum of 70 trials
following the end of the Initialization phase. The second criterion was
based on the uncertainty of the threshold prediction, which is esti-
mated as +1 SD around the threshold estimated by the model. The
criterion is reached when the biggest uncertainty is <6 dB. These
stopping criterion values were optimized to ensure: (1) the highest
possible reliability, i.e., stopping the tests when additional informa-

2628 and (2) compatibility with

tion becomes only weakly informative,
daily clinical practice, and to avoid the impact of high-level factors. In
fact, this maximum number of trials was fixed to limit the duration of
the tests for subjects with relatively high response variability.
Moreover, data from Schlittenlacher et al.?® showed that the root
mean square difference (RMSD) fell below 4 dB as early as 30 trials
following Initialization, and below 2 dB after 60 trials. Finally, no
statistically significant difference was obtained beyond 70 trials
independently of the testing method used (see Figure 6 of
Schlittenlacher et al.2®). In the current study, although we did not
measure the exact number of trials for each subject, the overall
minimum number of trials was 72 (22 trials minimum for the Initial-
ization phase and 50 trials minimum for the Testing phase).

General safety limits for automated audiometry procedure

As the main aim of this improved ML method is to test a wide range
of NH and HI listeners in a fully automated manner, we first estab-
lished some safety limits in terms of the maximum stimulus level to be
presented to all subjects. Hence, the maximum stimulation level was
set at 90 dB HL (the chosen equipment allowed this intensity level to
be reached, even at 125 and 250 Hz) and the minimum stimulation
level was set at ~20 dB HL. If one of these intensity limits is reached
during the Initialization phase, the protocol is to move to the next test

frequency.



AUTOMATED AIR-CONDUCTION AUDIOMETRY WITH MASKING

Next, to test subjects with severe hearing loss with maximum
safety in terms of high-intensity sound exposure, the variation inten-
sity step is reduced to 5dB during the Initialization phase when the
stimulus intensity level exceeds 80 dB HL, to guarantee that HI sub-
jects are not presented with excessively high sound levels. This limits
auditory overstimulation and uncomfortable levels that could occur
due to loudness recruitment (i.e., abnormally rapid growth of the
sensation of sound force in the presence of hearing loss). Similarly,
during the Testing phase following Initialization, when the stimulation
intensity to be presented is above 80 dB HL, a safety limit is imposed
such that the stimulation intensity cannot be higher than 5 dB with
respect to the last point tested within the concerned octave.

These limits are different from those used in Schlittenlacher
et al.?® (maximum level of 77 dB HL and minimum level of -10dB
HL), but it allows us to test listeners with severe hearing loss. While
Song et al.2* used -20 to 100 dB HL limits, the transducers used here
do not allow for such a high stimulation level, especially at low fre-
guencies, considering the maximum distortion rate set forth in IEC
60645-1:2017°¢ for type 2 audiometers.

Addition of positive and negative transient responses during
initialization phase when necessary

As our aim is to test a wide range of listeners as in daily clinical
settings, including those with cochlear dead zones and severe
hearing loss, previously unaddressed in published ML-based audi-
ometry approaches, we implemented a second key change. More
precisely, during the Initialization phase, if the subject provides no
response for a subset of frequencies due to the presence of either
severe hearing loss or an unresponsive cochlear region, then, for the
subsequent Testing phase, the audiogram and uncertainty estimates
are only assessed for that particular subset of frequencies that the
subject can still hear. In fact, transient negative responses are added
automatically below the measurement range (i.e., below -20 dB HL)
when the test sound is perceived at —20 dB HL. Similarly, transient
positive responses are added automatically above the maximum
testable intensity (i.e., above 90dB HL), to limit additional test
stimuli to be presented beyond this level during the Testing phase.
These transient responses constrain the threshold search interval
zones during the Testing phase. In fact, if no response is obtained on
more than two consecutive audiometric frequencies following the
Initialization phase, these frequencies are not tested during the
Testing phase.

Those transient positive and negative responses (when present)
are not taken into account for the final audiogram calculation and
those points are highlighted as transient responses in the audiogram
display. No such implementation was available in previous ML-based

audiometry approaches.

Automated contralateral masking during automated audiometry
procedure

Importantly, for automated audiometry tests to be fully autonomous,
we have also implemented automated contralateral masking in con-

trast to the ML-based audiometry approach described in

1.28 (howeversee Heisey et al.2?). Contralateral

Schlittenlacher et a
masking prevents cross-hearing and should be applied in cases of
asymmetric hearing loss, or conductive, or unilateral hearing loss.
Several assumptions were made here for the calculation of the
masking noise levels, in line with audiometry standards and guide-

1941 35 well as the literature.

lines,

The standard protocol implemented on the current improved ML
audiometer is to always apply a roving contralateral masking using
narrow-band noise when the test stimulus to be presented is over
35dB HL.*? The maximum masking intensity is set at 80dB HL.
Masking noise began randomly in the 1-3 s interval before the onset
of the pure-tone sequence. This ensures that inadvertent response
button presses at the onset of the masking noise are not considered
as the subject actually hearing the test stimuli. The masker remained
present for a total of 5-8s. The noise ramped on for 70 ms at the
beginning of the intersequence interval and ramped off during the
final 70 ms. In Heisey et al.,?’ an automated masking procedure was
implemented and masking noise began randomly in the 250-1500 ms
before the onset of the test sound. Pilot data (not shown here)
suggested that this was too short, especially for elderly subjects, and
led to a high number of false alarms.

Like for manual audiometry, for each test sound, an efficacy
criterion (i.e., the minimum masking intensity necessary to effectively
mask the contribution of the contralateral nontested ear®®) and a no-
overmasking criterion (i.e., the maximum masking intensity applicable
to the contralateral or nontest ear above which the masking noise
could be heard by the test ear and may impact the detection of the
test stimuli'®) are calculated to determine the masking intensity
needed for the nontest ear.

The efficacy criterion (M, in dB) is calculated for air-conduction
audiometry as follows:

Mets = PL - IA - Masking Min + ABG of NTE.

The no-overmasking criterion (M,,q,, in dB) is calculated as follows:

Miov = PL - ABG of TE + |A - Masking Max.

(Key: TE, test ear,; NTE, nontest ear; ABG, air bone gap, PL,
presentation level; |A, interaural attenuation).

The final Masking value is determined as follows:

1. If Mggs > Moy, the masking value used is Megs.

In this case, a warning message appears on the software
interface at the end of the test stating that “the thresholds obtained
may be adversely affected by contralateral masking. Ipsilateral
Rainville masking*® is recommended.”

2. If Mgt = Moy, the masking value used is M.

3. If Mgt < Moy, the masking value used is the arithmetic mean of

Meff and Mnov-

The Masking Max is set at 0dB and refers to the maximum
signal-to-noise ratio at the level of the (inner) test ear that ensures
detection of the test stimuli despite the presence of masking noise in
the nontest ear. In fact, pure-tone detection is still possible at a
signal-to-noise ratio of around -5 to -10dB in the presence of a
narrow-band masker.**
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The Masking Min is set at —20dB and refers to the minimum
signal-to-noise ratio observed at the level of the (inner) nontest ear to
ensure full masking of the nontest ear.

In fact, the Masking Max currently at 0 dB could be set lower (at
~=5 or =10 dB) and the Masking Min currently at —20 dB could be set
higher (at ~-10 or -15dB). Together, this provides an overall
~10-20dB range allowing for adequate masking considering the
presence of unknown parameters.

The value of the Interaural Attenuation (IA, in dB) used to cal-
culate masking is determined as a function of the specific on-ear
transducer (TDH 39 tested here; see Methods section "Material and
Calibration") used to perform the audiometry test, and is also
dependent on the test frequency. IA values available from the liter-

d,424>%6 and when these IA values are

ature have been implemente
unknown for a given on-ear transducer, the default value applied is
50 dB, which corresponds approximately to the IA value observed for
the different on-ear transducer types, averaged over all frequencies.

The ABG of the nontest ear refers to one of the following:

1. When no previous audiometry results are available (as in the
current study for the first ear tested per subject), a 40 dB ABG
assumption is adopted.

2. When only the air-conduction threshold is available (as in the
current study for the second ear tested per subject), ABG is
defined as being equal to the estimated air-conduction threshold
at the frequency tested divided by a coefficient (see example
cases in Supporting Information S1: Note 2), depending on the
suspected hearing loss etiology from the result of the Lateraliza-
tion test. If there is no evidence to suggest a conductive hearing
loss, the ABG of the NTE is estimated from the air conduction
pure-tone threshold divided by a factor [3 + [(Threshold of NTE/
120)*2]]. When a conductive hearing loss is suspected, the divi-
sion coefficient is [1 + (Threshold of NTE/120)].

The ABG of the test ear is unknown in the absence of bone-
conduction thresholds. Here we adopted the worst-case assumption
for the calculation of masking, that is, cases whereby the risk of con-
ductive hearing loss is maximal. Clinically, this maximum audiometric
ABG for any given frequency is considered to be 60 dB HL.*”~4? Hence,
this maximum value was systematically used for the current study.

Supporting Information S1: Note 2 provides three example cases
to illustrate the respect of both the efficacy and no-overmasking
criteria. In addition, for all three example cases provided, we compare
masking calculations as applied in the current study, as well as the

masking calculation used by Heisey et al.,?’

whereby the masking
value is always computed as 40 dB below stimulus presentation level.

Overall, this latter method seems inadequate for sufficient masking.

Measurement of thresholds

Although the two manual audiograms (Reference and manual
improved ML audiometer) were obtained using the same manual

audiometry procedure, they differed with regard to the following:
(1) the headphones used despite the calibration of both types
of headphones and (2) the audiometric booths used for testing,
although both were double-walled, sound-proof audiometric
booths.

On the other hand, the automated improved ML audiometer
differed from the two manual audiograms as it assessed continuous
threshold estimates in terms of frequency and provided confidence
interval estimates. For comparison purposes, the thresholds of
the automated improved ML audiometer were discretized to the
conventional audiometric frequencies. Importantly, the manual
measures differed from the automated measures with regard to the
threshold definition. The two manual audiometry approaches mea-
sured the subject's threshold using the asymmetric up-down pro-
cedure. In contrast, the automated improved ML method defined
the threshold as the predicted 50% audible contour, in line with
Schlittenlacher et al.?®

Statistical tests

All group-level statistical tests and effect size calculations were
performed using JMP Pro 14.0 on a Mac platform. The Shapiro-
Wilk test of normality was performed for all data sets. Non-normally
distributed data was examined using nonparametric tests. Pairwise
comparisons were carried out using the Steel-Dwass method for
nonparametric comparisons. To compare more than two groups,
one-way analysis of variance rank tests (Kruskal-Wallis H test) were
used. To assess agreement between testing methods and test-
retest measures, intra-class correlation (ICC) measures were
obtained using a one-way random-effects model. For posthoc
multiple comparisons analyses, a values were Holm-Bonferroni-

corrected.

Results

Figure 1A shows examples of audiograms measured for four example
ears using the automated ML method (the black line indicates the
50% contour and the dashed line indicates the uncertainty estimate).
Figure 1B shows examples of audiograms measured for three distinct
representative ears using the three methods (i.e., manual Reference
audiogram: black line; manual improved ML method: blue line;
automated improved ML method: green line): example ear 1 with NH
thresholds (Figure 1B; top), example ear 2 with sloping high-
frequency hearing loss (Figure 1B; middle), and example ear 3 with
hearing loss at most frequencies (Figure 1B; bottom). All thresholds
measured using the manual Reference method are shown in Figure 1C
(thin lines indicate individual ears, thick line indicates mean, shaded area
indicates SD). Similarly, thresholds using the manual and automated
improved ML methods are shown in Figure 1D,E, respectively. For
comparison, all mean+1 SD thresholds using the three methods are

shown in Figure 1F.
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FIGURE 1 Comparison of air-conduction audiometry measures using three different methods. (A) Four examples of fully automated
ML-based air-conduction pure-tone audiograms. The red and green squares indicate each subject's negative and positive responses,
respectively. The thick black lines correspond to the continuous threshold estimate and the dashed thin lines surround the area within which
50% is within one standard deviation of the highest probability, according to the GP classifier. Transient responses (gray squares) are not taken
into account for the 50% audible contour. (B) Air-conduction pure-tone audiograms for three representative subjects tested using the three
methods as follows: (1) manual reference audiometer (black), (2) manual improved ML audiometer (blue), (3) automated improved ML audiometer
(green). The continuous automated audiometry thresholds were discretized to the 11 frequencies manually tested for comparison. (C) Mean and
SD of audiograms for the 218 ears tested using the manual Reference audiometer (thin lines correspond to individual ears, thick line corresponds
to mean, shaded area indicates 1 SD). (D) Mean and SD of audiograms for the 218 ears tested using the manual improved ML audiometer.
(E) Mean and SD of audiograms for the 218 ears tested using the automated improved ML audiometer. (F) Comparison of all means and SDRR
with the three methods.

Comparison of threshold values audiometry measurements performed under identical conditions (see

Margolis et al.?%; SD of 5.5dB using the same audiometer, same
The mean raw signed differences for all 109 subjects and all 218 ears location, and same experimenter; see also Mahomed et al.,?°
are shown in Table 2 (for individual frequencies, see Supporting Gosztonyi et al.,>° Schmuziger et al.,>* and Ishaq et al.).>2 The mean

Information S1: Table 2). These values compare favorably to two absolute differences are also shown in Table 2 (for individual
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TABLE 2

A pair of comparisons for all frequencies tested
Manual ML audiometer versus Reference
Automated ML audiometer versus Reference

Manual versus automated ML audiometer

Raw differences
(mean £ SD, dB HL)

Overall performance differences computed with the first procedure minus the second one listed (n =218 ears).

Absolute differences
(mean £ SD, dB HL)

2.97+7.93 5.65+6.30
1.89+7.87 5.64+5.81
-1.08+4.42 3.18+3.25

Abbreviation: ML, machine learning.

TABLE 3 Comparison of accuracy with previous ML-based audiometry (signed difference computed with the first procedure minus

the second one listed).

Automated ML-based audiometry versus Reference

Schlittenla-
Song et al.?* Barbour et al.2® cher et al.?®
(n =42 ears) (n=42 ears) (n=40 ears) Current study (n =218 ears)
Signed difference -0.011+£5.61dB -0.969 £ 6.02dB Manual ML audiometer versus Reference =2.97 +7.93 dB
Automated ML audiometer versus Reference = 1.89 +7.87 dB
Manual versus automated ML audiometer = -1.08 + 4.42 dB
Absolute difference 4.16+3.76 dB 3.24+5.15dB Manual ML audiometer versus Reference =4.19 +5.21
Automated ML audiometer versus Reference =4.53 + 5.01
Manual versus automated ML audiometer = 3.18 + 3.25
RMSD 5.58dB NH: 4.9 dB Manual ML audiometer versus Reference = 6.71 dB + 14.93
HI: 7.2dB Automated ML-audiometer versus Reference = 6.76 dB + 14.41

Manual versus automated ML-audiometer =4.28 dB + 8.50

Abbreviations: HI, hearing impaired; ML, machine learning; NH, normal hearing; RMSD, root mean square difference.

frequencies, see Supporting Information S1: Table 3). The fully au-
tomated ML method differed from the Reference audiometry
thresholds by ~6 dB on average, and the manual and automated ML
methods differed by only ~3 dB.

Performance comparisons

Next, performance or accuracy comparison between the three dif-
ferent methods was carried out by computing the RMSDs in dB HL
from raw threshold differences. The overall RMSD for all subjects
tested here when comparing the automated ML-audiometer with the
Reference audiometer = 6.76 dB (NH = 5.53; HI = 6.70; see Support-
ing Information S1: Table 4). When comparing the manual and au-
tomated ML audiometer, the overall RMSD =4.28 dB (NH =4.01;
HI =4.31). The two manual approaches (Reference and manual ML
audiometer) had an overall RMSD = 6.71 dB (NH = 4.88; HI = 6.66). In
Table 3, all differences and RMSD values are compared with previous

ML-based audiometry approaches developed.2+2%28

Statistical comparisons

First, we checked if the threshold distribution at the individual tested
frequencies using the three different methods was normally distrib-
uted using the Shapiro-Wilk test of normality. As the data sets were

not sufficiently Gaussian (Shapiro-Wilk test of normality), we chose
to perform nonparametric statistical tests.

Next, to assess the presence of statistically significant differ-
ences, we compared the raw thresholds from the three audiogram
measures (manual Reference, and manual and automated
ML audiometer). No significant difference was found between
thresholds from the three methods (Kruskal-Wallis H test,
x2(2) = 3.95, p=0.139; for posthoc comparison for individual fre-
quencies, see Supporting Information S1: Table 5). Moreover, no
significant difference was found when comparing: (1) the
manual ML audiometer and Reference (Steel-Dwass, p =0.132), (2)
the automated ML audiometer and Reference (Steel-Dwass,
p=0.361), and (3) the manual and automated ML audiometer
(Steel-Dwass, p = 0.824).

We also used a two-way random-effects (inter-method reli-
ability) and expected mean squares to look at the reliability between
the three methods (manual Reference, and manual and auto-
mated ML audiometer). The main effect of the methods confirmed
good agreement between the three methods (F ratio=2.97;
p=0.0522).

PTA comparisons

The air-conduction pure-tone audiogram is often summarized for

each ear with a pure-tone average (PTA) of thresholds, measured for
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TABLE 4 Hearing status from PTA distribution.

Classification of Manual ML AutomatedML
hearing status Reference audiometer audiometer
NH hearing n=232 ears n=26 ears n=27 ears
PTA<20dB HL

Hearing loss n =186 ears n=192 ears n=191 ears

PTA>20dB HL

Abbreviations: NH, normal hearing; PTA, pure-tone average.

a subset of frequencies (0.5, 1, 2, 4 kHz; see guidelines®®). The dis-
tribution of hearing status computed from the PTA is shown in
Table 4 for the three methods. Detailed analysis of the ears not
classified similarly by the 3 methods revealed that: (1) for the
manual ML audiometer, PTA differences varied between 1.25 and
2.5dB HL with respect to the Reference audiometer values, and (2)
for the automated ML audiometer, PTA differences varied between
0.5 and 2.2 dB HL with respect to the Reference audiometer values.

Moreover, the intra-class correlation (ICC) was used to assess the
agreement between the PTA values obtained using the three meth-
ods (manual Reference, and manual and automated ML audiometer).
We found a high ICC value (i.e., close to 1), indicating high agreement
between the three methods (ICC value obtained using a one-way
random-effects model = 0.977).

Sensitivity and specificity analysis

Sensitivity and specificity values are often calculated for new testing
procedures and provide interesting metrics for hearing screening
purposes. In fact, sensitivity is calculated based on how many people
have the disease in comparison to the Reference audiometer
results.>® It is also referred to as the true positive rate. With a fixed
decision criteria to conclude hearing loss when PTA >20dB, the
sensitivity of both manual and automated ML audiometer = 100%.
Importantly, these results demonstrate that the pathology is never
missed by both measures of the ML audiometer (False negatives = 0).
Specificity is calculated based on how many people do not have the
disease in comparison to the Reference audiometer results. With the
same criteria as above, the specificity of manual ML audiometer =
81.25% and automated ML audiometer =84.38%. These results
demonstrate that the pathology is attributed to certain subjects
who are not classified as hearing loss by the gold standard, that is,
the Reference audiometer (False positives = 6 or 5 ears over a total
of 218 ears for manual and automated ML audiometer, respectively;
~2%-3%). Finally, the positive predictive value of the manual ML
audiometer = 96.88%, and the automated ML audiometer = 97.38%.
Although the above results are from the comparison of the ML
audiometer with the Reference audiometer (i.e., comparison of
different equipment), the Sensitivity and Specificity when compar-
ing audiometry from exactly the same equipment (i.e., manual vs.
automated ML audiometer) correspond to 99.48% and 100%,
respectively.

Duration of tests

For all subjects tested, the automated ML audiometry took on average
13.73 £ 2.80 min (mean * SD; min-max = 9.10-19.90) to obtain contin-
uous audiometry thresholds with 1-dB precision, as well as uncertainty
estimates. The manual Reference audiometry and manual ML audiom-
etry took an average of 7.67 + 1.89 min to obtain discrete thresholds at
11 frequencies with 5-dB precision. Even though the manual audiom-
etry tests are faster, the fully automated ML-based audiometry does not
require the presence of the hearing specialist and can therefore be
carried out before seeing the hearing specialist. In addition, the auto-
mated method provides continuous audiometry thresholds instead of 11
discrete thresholds for the two manual methods. The maximum test
time measured here at ~20 min for the automated ML audiometry
indicates compatibility with daily clinical practice while avoiding the

impact of high-level factors, such as listener fatigue.

STUDY 2: PERFORMANCE OF A FAST
ML-BASED AUDIOMETRY

For screening purposes, we developed a fast version of the automated
improved ML audiometry (detailed in Study I) that can be used in both
medical and nonmedical settings; for example, for hearing screening in
schools or hearing follow-ups during the course of certain medical
treatments. In the case of screening, our reasoning was that the number
of trials during the Testing phase could be reduced for a less precise
audiogram to reduce the testing time from the regular ML-based method
described in Study | (average duration estimated: 13.73 + 2.80 min).

Methods

Subjects

A subset of subjects from Study | also participated in Study Il (n =43,
22 women), which was run on the same day following all tests of
Study |. The mean age of subjects tested was 55.3 + 12.03 (min-max
age:18-88 years) and the hearing status of the tested ears was dis-
tributed as follows: 34 NH ears and 52 HI ears (HI when PTA > 20 dB
HL from manual Reference audiometry measures).

Manual audiometry procedure

See Methods section "Manual audiometry procedure" of Study I.

Fast automated ML audiometry procedure

The procedure is the same as the one described in Study | (see
Methods section "Automated ML audiometry procedure" in Study ),
except for the first stopping criterion used. More precisely, the same
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Initialization phase was used as for study I. During the Testing phase,
to decrease the test duration, the first stopping criterion was fixed at
a minimum of 25 trials and a maximum of 45 trials. The second
stopping criterion used during the Testing phase was similar to the
one described in Study I.

Results

Comparison of threshold values for fast automated ML
audiometry

The mean raw and absolute differences between the fast
automated ML audiometry measures and the manual Reference
measures were -4.17+7.02dB and 6.46 +4.99 dB HL, respectively
(see Supporting Information S1: Table 6). While those differences are
higher than the ones obtained for the regular automated ML audi-
ometer from Study | (raw difference: 1.89 + 7.87 and absolute differ-
ence: 5.64 + 5.81), they remain within 15 dB of the manual Reference
measures. Moreover, the raw audiometric thresholds obtained using
the two methods (i.e., fast automated ML vs. Reference) did not differ
significantly for all frequencies (Kruskal-Wallis H test, x*(2)=3.57,
p=0.059). The ICC was used to assess the agreement between the
PTA values obtained using the two methods (manual Reference and
fast automated ML). We found a high ICC value (i.e., close to 1) indi-
cating high agreement between the two methods (ICC value obtained

using a one-way random-effects model = 0.991).

Duration of tests

For all subjects tested here, the duration of the fast automated ML
audiometry test was 9.85 + 2.36 min (mean + SD; min-max = 4.33-14.90)
to obtain continuous audiometry thresholds with 1-dB precision, as well
as uncertainty estimates. Reducing the testing phase to a maximum of 45
trials instead of 70 trials (as in Study 1) led to a gain of ~4 min. While the
duration of the fast automated ML audiometry test is still higher than
what has been reported for manual and conventional audiometry tests
(5-10 min to obtain discrete thresholds,'? as well as for other ML-based
methods with a fixed masking procedure® (5-6.9 min), such a fast ML-
based automated test can be run in the absence of a hearing specialist or
health professional, and with a wide range of HI listeners.

STUDY 3: TEST-RETEST RELIABILITY OF
ML-BASED AUDIOMETRY
Methods

Subjects

To examine the test-retest reliability of the regular, automated ML-
based audiometry method described in Study I, a subset of subjects

from Study | also participated in Study Ill (n = 50 subjects, 22 women).
Unlike Study Il, which was run on the same day as Study |, Study Il was
performed on a different day (spaced by a maximum of 3 months from
Study 1). No notable otological history could be identified between
Studies | and Il for all subjects. The mean age of subjects tested was
60.1+12.7 years (min-max age: 18-95 years) and the hearing status of
the tested ears was distributed as follows: 16 NH ears and 84 HI ears
(HI when PTA > 20dB HL from Reference audiometer).

In parallel, to examine the cross-clinical agreement between man-
ual Reference audiometry, we examined the audiograms of a separate
group of 134 subjects (i.e., those subjects did not participate in Study |;
77 women). More precisely, two different hearing practitioners in two
different clinics in France measured the hearing thresholds of the same
group of subjects, using the same general testing protocol (i.e., the
modified Hughson-Westlake procedure), but with different testing
materials, although they have all been previously calibrated for audi-
ometry tests. The mean age of subjects tested was 62.17+17.04
(min-max: 18-95 years) and the hearing status of the tested ears was
distributed as follows: six NH ears and 262 HI ears (HI when PTA >

20 dB HL from practitioner 1 manual Reference audiometry measures).

Assessing test-retest reliability of automated ML
audiometry

The automated ML audiometry (described in Study 1) was run twice
for a subset of 50 subjects in the same conditions (i.e., same trans-
ducer, same test booth).

Assessing cross-clinical agreement with Reference
audiometry

To examine the agreement between audiograms performed in clinical
conditions using different Reference-type audiometers and transducers,
we examined the audiograms of 134 subjects tested by two different
hearing practitioners during routine clinical assessment and management
protocols. The first hearing practitioner used a calibrated MADSEN lItera
Il audiometer with TDH 39 or ME-70 headphones. The second hearing
practitioner used either a calibrated Interacoustics AD528 audiometer
with DD45 headphones; or a calibrated Siemens Unity 3 with Sennheiser
HDA 300 headphones. The order of tests performed by the two hearing
practitioners was randomized. All manual audiometry procedures were

carried out with appropriate masking (in line with Favier et al.'®).

Results

Test-retest reliability of automated ML audiometry
measures

For all 50 subjects tested, Figure 2A shows the mean of the test-
retest thresholds measured with the automated ML audiometer
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FIGURE 2 Test-retest comparisons of automated ML audiometry measures and cross-clinical agreement of Reference audiometry
measures. (A) Mean of test-retest audiograms measured with the automated ML audiometer from Study | (thin lines correspond to individual
ears, thick line corresponds to mean; test audiograms are shown in black, and retest audiograms are shown in orange). (B) Mean of the two
Reference audiograms measured manually by two different practitioners (thin lines correspond to individual ears, thick line corresponds to mean;
Practitioner 1 data are shown in black and Practitioner 2 data are shown in orange). ML, machine learning.

TABLE 5
measures (different practitioners and different equipment).

Raw differences

Overall test-retest reliability of automated ML audiometry and cross-clinical agreement in manual Reference audiometry

Absolute differences RMSD (Mean + SD,

For all frequencies tested (Mean = SD, dB HL) (Mean £ SD, dB HL) dB HL)
Test-retest reliability of automated ML audiometry, n = 100 ears -0.31+4.38 2.92+3.27 4.39+7.99
Cross-clinical agreement with different materials and practitioners, -4.87 +10.33 8.13+8.02 11.41+21.34

n =268 ears

Abbreviations: ML, machine learning; RMSD, root mean square differences.

described in Study | (individual lines show individual ears, test
thresholds are in black, and retest thresholds are in orange). The
mean signed difference between the two automated ML audiometry
measures was 0.31 +4.38 dB and the mean absolute difference was
2.92 +3.27 dB HL (Table 5, for individual frequency comparisons, see
Supporting Information S1: Table 7). Moreover, no significant dif-
ference was observed between the test-retest audiometry measures
(Kruskal-Wallis H test, x%(1) =0.025, p =0.874; all posthoc differ-
ences for individual frequencies > 0.05, Supporting Information S1:
Table 8). We also used a two-way mixed effects to look at the test-
retest reliability for the automated ML-based audiometry measures.
The main effect confirmed good agreement between the test-retest
measures (F ratio = 0.003; p = 0.954). Moreover, the ICC was used to
assess the agreement between the test-retest PTA values. We found
a high ICC value (i.e., close to 1) indicating high agreement between
the test-retest PTA measures (ICC value obtained using a one-way
random-effects model = 0.995).

The overall RMSD for the test-retest automated ML audiometry
measures was equal to 4.39 dB (Table 6; NH: 3.61; HI: 4.50; see also
Supporting Information S1: Table 9). Table 6 shows the test-retest
differences and RMSD values measured here in comparison with

previous ML-based audiometry approaches developed.?#2¢:28

Cross-clinical agreement of Reference audiometry
measures

For all 134 subjects tested, Figure 2B shows the mean of the
thresholds measured by two hearing practitioners (individual lines
show individual ears, practitioner 1 thresholds are in black, practi-
tioner 2 thresholds are in orange). The mean signed difference
between the two Reference audiometry measures for all subjects was
-4.87 +10.33 dB and the mean absolute difference between the two
Reference audiometry measures was 8.13 +8.02 dB HL (Table 5, for
individual frequency comparisons, see Supporting Information S1:
Table 10). Furthermore, the two measures differed significantly,
suggesting weak cross-clinical agreement (Kruskal-Wallis H test,
x2(1)=17.65, p<0.0001; significant posthoc differences at 500,
1000, 4000, and 8000 Hz; see Supporting Information S1: Table 11).
The overall RMSD for the two manual Reference audiometry mea-
sures was equal to 11.41 dB (Table 6; NH: 8.98; HI: 11.46; see also
Supporting Information S1: Table 12). Nevertheless, the ICC used
to assess the cross-clinical agreement revealed a relatively high ICC
value of 0.916 (obtained using a one-way random-effects model) and
suggests relatively high agreement between the cross-clinical PTA

measures.
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TABLE 6 Comparison of test-retest reliability of automated ML audiometry method described here with previous ML-based audiometry, as

well as the cross-clinical agreement of manual Reference audiometry.

Song et al.?* Barbour et al.?2®  Schlittenlacher et a
(n =42 ears) (n=42 ears) (n =40 ears)

Signed difference 0.75+6.29dB -0.486+7.15dB

Absolute difference 4.51+4.45dB 2.85+6.57dB

RMSD 6.32dB 6.9dB

122 Current study (n for automated ML audiometer = 100 ears;

n for Reference audiometer = 268 ears)

Test-retest of automated ML audiometry = -0.31 +4.38 dB
Cross-clinical agreement with manual Reference
audiometry = -4.87 + 10.33 dB

Test-retest of automated ML audiometry =2.92 + 3.27 dB
Cross-clinical agreement with manual Reference
audiometry =8.13 +8.02dB

Test-retest of automated ML audiometry =4.39 +7.99 dB
Cross-clinical agreement with manual Reference
audiometry =11.41+21.34dB

Abbreviations: ML, machine learning; RMSD, root mean square difference.

DISCUSSION

In the last decade, fully automated ML-based audiometry approaches

have been increasingly proposed in the literature!?24-262854 i ap

effort to streamline the clinical examination process. Here, we extend
the approach developed and tested in Schlittenlacher et al.?®: a non-
parametric approach to estimating the audiogram in a frequency-
continuous manner using Bayesian estimation and ML classification.
Moreover, for fully automated tests to be used in clinical settings
without the need for a hearing practitioner, we applied three major
changes: (1) general safety limits during all automated audiometry
testing in an effort to extend the method developed by Schlittenlacher
et al.?8 for safe testing of a wide range of NH and HI subjects, including
those with severe hearing loss; (2) addition of transient positive and
negative responses to constrain the audiometry Testing phase, to cater
for subjects with cochlear dead zones (or unresponsive regions) or
when the threshold is beyond the intensity limits of the transducers,
and (3) automated contralateral masking rules for improved threshold
measures extending beyond the method described in Heisey et al.?? In
the latter, the authors apply an automated masking method to their
ML-based audiometry through the addition of masking noise presented
at a default masking value of 40dB below the test stimulus level.
However, as detailed in Supporting Information S1: Note 2, this
approach remains limited and is, in some cases, insufficient to mask
responses of the nontest ear (see Example Cases #1-3). In contrast, the
masking rules described here aim to cater to a wide range of HlI lis-
teners. The main limit is that, in some cases, the efficacy criterion, that
is, the intensity level at which contralateral masking becomes effective,
is higher than the overmasking criterion, that is, the intensity level at
which masking is too loud to ensure correct detection of the test
stimulus. This configuration only occurs when using transducers with
low transcranial transfer for listeners with substantial ABGs. However,
this issue can be easily addressed by using inserts for air-conduction
stimulation that limits the transcranial transfer (see Supporting Infor-
mation S1: Note 2, Example Case #3).

In Study I, we showed that automated measures of the
improved ML audiometer provide accurate hearing thresholds for air-

conduction pure-tone audiometry, not statistically different from
those obtained from a well-established and conventional audiometer
(Table 2). Importantly, in Study |, we tested a large number of sub-
jects with a wide range of hearing status, including those with severe
hearing loss and asymmetric losses. In fact, the mean absolute dif-
ference between the automated ML-based method and the con-
ventional Reference one was ~6 dB. Such raw and mean absolute
differences are in line with previously published ML approaches,?*28
as described in Table 3, and with other automated audiometry ap-
proaches in general.122° Finally, the high ICC also suggests very high
agreement in PTA values obtained using the three methods. Future
studies should aim to evaluate such automated ML-based methods
on hard-to-test populations, including testing a larger number of
subjects with severe hearing loss.

In Study I, we showed that a fast automated ML-based method
with fewer test trials may be used for screening purposes as the
difference between the fast automated ML-based method and the
conventional Reference one was <15dB (mean absolute differ-
ence ~7 dB). While the duration of ML-based audiometry tests is not
faster for subjects as compared to manual conventional approaches,
it is important to note that test automation allows a key time save for
hearing professionals. Overall, such medical time save granted by test
automation should, in principle, allow hearing practitioners to address
a larger number of patients and decrease appointment waiting delays.
Thus, an audiologist may set up a first patient in a test booth,
including, provide all test instructions orally, answer any question
from the patient, and equip the patient with the transducers before
launching the automated test. During the entire testing time, the
audiologist does not need to be in the test booth of the first patient
and may use this time to set up a second patient in a different test
booth. All individual responses of the subject or patient are displayed
on the experimenter interface along with the 50% audiometric con-
tour and the uncertainty range, which allows the audiologist to en-
sure that the subject responded consistently.

Finally, in Study Ill, we showed that the test-retest reliability of
the automated improved ML approach was high, with no statistical

difference between the two measures and high ICC (Table 5). In fact,
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the mean absolute difference was ~3 dB. In comparison, the general
agreement between two audiograms measured manually in different
clinics using different conventional audiometers was particularly low
(~8dB). It should be noted that this value does not reflect a true
“test-retest reliability” measure for the Reference audiogram as dif-
ferent hearing practitioners measured the hearing thresholds of the
same group of subjects, using the same general testing protocol (i.e.,
the modified Hughson-Westlake procedure), but with different ma-
terials that are nevertheless all calibrated to provide similar results.
This rather poor cross-clinical agreement may be due to various
factors, including human variability (e.g., transducers used, calibration
performed, expertise of clinician, positioning of material, and general
testing method). Together, the results from all three studies confirm
the performance and reliability of an automated improved ML audi-
ometer within a heterogeneous hearing-loss population.

A remaining challenge with ML-based audiometry technologies is
to convince clinicians to use them to directly monitor their time gain,
and subsequently, assess the added benefits of higher audiometry
precision (1-dB precision, uncertainty estimates, and continuous
thresholds along the frequency axis) and higher audiometry repeat-
ability as automated procedure implies fewer human errors and
variability in testing procedure. Estimating thresholds to 1-dB preci-
sion along the full frequency axis may eventually lead to improved
and targeted patient follow-up and improved hearing-aid adjustment
parameters. Ultimately, such automated ML-based audiometry may
facilitate close monitoring of hearing function in different settings,
including hospitals, workplaces, and assisted living facilities, and at all
stages of life, particularly during vulnerable periods (e.g., during
development, during the course of ototoxic treatments). Long-term
monitoring of such ML audiometry approaches is key to prevent and
reduce as much as possible systematic errors by different users.

In Europe, automated techniques such as the AMTAS?! are
available to clinicians for use with adult patients but remain scarcely
used. One of the reasons may be due to the limited benefits of such
techniques, for example, they may not provide continuous estimates
of thresholds in frequency and predictable stimuli may not work for
uncooperative subjects.>®> While ML-based methods address this
disadvantage, such techniques do not allow the administration of
other audiometry tests, for example, speech audiometry tests with
automated annotation of patients’ responses. Thus, the time save
provided by such automated techniques may appear limited. In the
future, we aim to expand the current framework by including addi-
tional tests, such as bone-conduction audiometry®® and speech
audiometry.9'10 In addition, most automated methods, including the
one described here, are unsuited for use with children.>” Hence, ML-
based audiometry needs to be expanded to include child-friendly
approaches. Furthermore, to optimize the overall clinical procedures,
future versions of ML-based methods should take into account lis-
tener parameters, such as age and sex, medical history, and otological
examination results.”® Finally, ML may offer additional advantages,
such as automated evaluation of tympanic membrane images before
audiometry testing. Such a combination of methods and tests within
one medical device may offer a more unified and reliable diagnosis

for improved and personalized patient care, in addition to providing

large data sets for future hearing research.
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